

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Viking TechnologySingle-Channel RDRAM NexMod™ Specification

General Description

Viking VINRxxxETx0xCxx are high-density Direct Rambus NexMod™ Modules. The modules consist of up to eight, CMOS 16M x 18-bit Rambus DRAM in FBGA packages uniquely arranged in a PCB stacked module. The modules also include an EEPROM for Serial Presence Detect, VRM (voltage regulator module), DRCG (Direct Rambus Clock Generator), and end-of-channel termination. Decoupling capacitors are mounted on the circuit boards for each RDRAM. NexMod™ modules directly mount to motherboards using a BGA connection.

The NexMod™ product family addresses the needs of customers designing space-constrained systems. NexMod™ is a cost effective, small volumetric form factor solution that simplifies system layout and speeds time-to-market by providing virtually all the components needed for a complete Rambus channel.

Rambus Signaling Level (RSL) technology permits up to 1066 MHz transfer rates while using conventional system and board design technologies. RDRAM devices are capable of sustained data transfers at 938ps per two bytes (7.5ns per 16 bytes). The RDRAM architecture enables the highest sustained bandwidth for multiple, simultaneous, randomly addressed, memory transactions. The separate control and data buses with independent row and column control yield over 95% bus efficiency. The RDRAM's multi-bank architecture supports up to four simultaneous transactions per device.

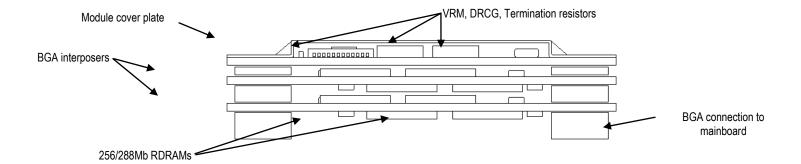
Features

- NexMod and Rambus compatible:
 - Fully compatible with NexMod
 - Simplifies system layout
 - Faster time-to-market
- Stacked PCB module design:
 - Improves signal integrity and margin
 - Shortens Rambus channel length by stacking PCBs and placing DRCG, VRM, RDRAM VREF and termination networks on module
 - BGA connectors to mainboard provide mounting and prototype flexibility
 - BGA connector to mainboard utilizes tin/lead paste for RoHS 5 applications
 - BGA interposers within module
- 200 pin interconnect pattern with 0.50" (1.27mm) pitch
- Module footprint: 1.1 inches x 2.0 inches
- Serial Presence Detect (SPD) support
- Operates from a 2.5 volt supply (±5%)
- Low power and powerdown self-refresh modes
- I/O Freq up to 1066 Mhz, tRAC up to 32 ns
- Separate RAS and CAS buses for higher efficiency
- RoHS 5 Compliant* (see last page)

Related Documents

Data sheets for the Rambus memory system components, including the Rambus DRAMs, Rambus standards, and SORIMM connector are available on the Rambus web site at http://www.rambus.com.

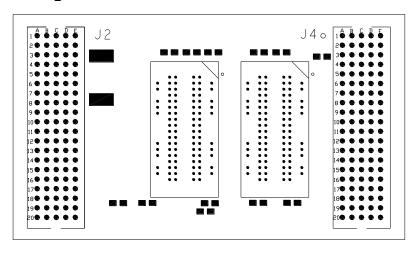
Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com


This Data Sheet is subject to change without notice.

Part Numbers by Configuration

Part Number	Description	RDRAM Device	Module Speed	RDRAM die Rev.
VINR128ET004LCEB-C	144MB, ECC, BGA connector	Elpida EDR2518ABSE-AEP-E	1066MHz 32ns	В
VINR256ET008LCEB-C	288MB, ECC, BGA connector	Elpida EDR2518ABSE-AEP-E	1066MHz 32ns	В
VRNR512ET216LCEB	576MB, ECC, BGA connector	Elpida EDR2518ABSE-AEP-E	1066MHz 32ns	В

Module arrangement

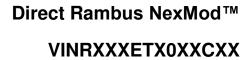

Module Stack-up Diagram

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

Module Pad Number and Signal Names

Top View of NexMod Footprint, Indicating Pin Locations (Not in scale)


J2 Connector Pinout

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A 1	VDD	B1	VDD	C1	VCMOS	D1	VCMOS	E1	VCMOS
A2	VDD	B2	SCK	C2	GND	D2	DQA8	E2	GND
A3	VDD	В3	DQA6	C3	GND	D3	CMD	E 3	VTERM*
A4	VDD	B4	DQA4	C4	GND	D4	DQA7	E4	VTERM*
A5	VDD	B5	DQA2	C5	GND	D5	DQA5	E 5	VTERM*
A6	VDD	B6	DQA0	C6	GND	D6	DQA3	E 6	GND
A7	GND	B7	CFM	C7	GND	D7	DQA1	E7	GND
A8	GND	B8	CFMN	C8	GND	D8	CTMN	E8	CTMN-DRCG*
A9	GND	B9	ROW1	C9	GND	D9	CTM	E9	CTM-DRCG*
A10	GND	B10	COL4	C10	GND	D10	ROW2	E10	GND
A11	GND	B11	COL2	C11	GND	D11	ROW0	E11	VREF
A12	GND	B12	COL0	C12	GND	D12	COL3	E12	VREF
A13	GND	B13	DQB0	C13	GND	D13	COL1	E13	GND
A14	VDD	B14	DQB2	C14	GND	D14	DQB1	E14	SIN
A15	VDD	B15	DQB4	C15	GND	D15	DQB3	E15	GND
A16	VDD	B16	DQB6	C16	GND	D16	DQB5	E16	GND
A17	SA0	B17	GND	C17	GND	D17	DQB7	E17	GND
A18	SA1	B18	REFCLK	C18	GND	D18	DQB8	E18	VDD3.3
A19	SA2	B19	SDA	C19	SWP	D19	GND	E19	VDD3.3
A20	PCLK/M	B20	GND	C20	SYNCLK/N	D20	SVDD	E20	SCL

^{*}VTERM, CTMN-DRCG, and CTM DRCG pins are only used if internal VRM and DRCG options are not used on the NexMod.

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

Module Pad Number and Signal Names (cont'd)

J4 Connector Pinout

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	VCMOS	B1	VCMOS	C1	VCMOS	D1	VDD	E1	VDD
A2	GND	B2	RESERVED*	C2	GND	D2	RESERVED*	E2	VDD
A3	VTERM	B3	RESERVED*	C3	GND	D3	RESERVED*	E 3	VDD
A4	VTERM	B4	RESERVED*	C4	GND	D4	RESERVED*	E4	VDD
A 5	VTERM	B 5	RESERVED*	C 5	GND	D5	RESERVED*	E 5	VDD
A6	GND	B6	RESERVED*	C6	GND	D6	RESERVED*	E6	VDD
A7	GND	B7	RESERVED*	C7	GND	D7	RESERVED*	E 7	GND
A8	GND	B8	RESERVED*	C8	GND	D8	RESERVED*	E8	GND
A9	GND	B9	RESERVED*	C9	GND	D9	RESERVED*	E9	GND
A10	GND	B10	RESERVED*	C10	GND	D10	RESERVED*	E10	GND
A11	VREF	B11	RESERVED*	C11	GND	D11	RESERVED*	E11	GND
A12	VREF	B12	RESERVED*	C12	GND	D12	RESERVED*	E12	GND
A13	GND	B13	RESERVED*	C13	GND	D13	RESERVED*	E13	GND
A14	RESERVED*	B14	RESERVED*	C14	GND	D14	RESERVED*	E14	GND
A15	GND	B15	RESERVED*	C15	GND	D15	RESERVED*	E15	VDD
A16	GND	B16	RESERVED*	C16	GND	D16	RESERVED*	E16	VDD
A17	GND	B17	RESERVED*	C17	GND	D17	GND	E17	VDD
A18	GND	B18	RESERVED*	C18	GND	D18	VDD	E18	VDD
A19	GND	B19	GND	C19	GND	D19	VDD	E19	VDD
A20	GND	B20	GND	C20	GND	D20	GND	E20	GND

^{*}Reserved pins are used during module assembly at the factory. Do NOT connect in system layout.

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

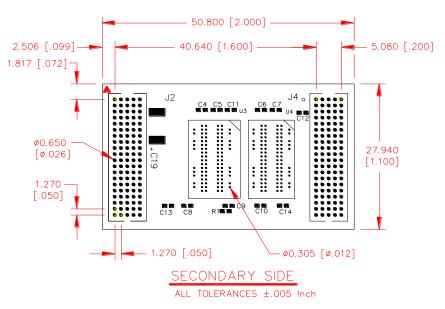
Module Connector Pad Description

Signal	I/O	Туре	Description
GND			Ground reference for connector pads, RDRAM core, and interface.
CFM	I	RSL	Clock from master. Interface clock used for receiving RSL signals from the Channel. Positive polarity.
CFMN	I	RSL	Clock from master. Interface clock used for receiving RSL signals from the Channel. Negative polarity.
CMD	I	VCMOS	Serial Command used to read from and write to the control registers. Also used for power management.
COL4 COL0	I	RSL	Column bus. 5-bit bus containing control and address information for column accesses.
СТМ	0	RSL	Clock from on-board DRCG to Master. Interface clock used for transmitting RSL signals to the Channel. Positive polarity.
CTMN	0	RSL	Clock from on-board DRCG to master. Interface clock used for transmitting RSL signals to the Channel. Negative polarity.
DQA8 DQA0	I/O	RSL	Data bus A. 9-bit bus carrying a byte of read or write data between the Channel and RDRAMs. DQA8 is not used on modules with x16 RDRAM devices.
DQB8 DQB0	I/O	RSL	Data bus B. 9-bit bus carrying a byte of read or write data between the Channel and RDRAMs. DQB8 is not used on modules with x16 RDRAM devices.
ROW2 ROW0	I	RSL	Row bus. 3-bit bus containing control and address information for row accesses.
SCK	1	VCMOS	Serial clock input. Clock source used to read from and write to the RDRAM control registers.
NC			Pads are not connected. Reserved for future use.

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

Module Connector Pad Description (cont'd)


Signal	I/O	Туре	Description
SA0	I	SVDD	Serial Presence Detect Address 0.
SA1	I	SVDD	Serial Presence Detect Address 1.
SA2	1	SVDD	Serial Presence Detect Address 2.
SCL	I	SVDD	Serial Presence Detect Clock.
SDA	I/O	SVDD	Serial Presence Detect Data (Open Collector I/O).
SIN	I/O	VCMOS	Serial I/O for reading from and writing to the control registers. Attaches to SIO0 of the first RDRAM on the module.
SVDD			SPD Voltage. Used for signals SCL, SDA, SWE, SA0, SA1 and SA2.
SWP	ı	SVDD	Serial Presence Detect Write Protect (active high). When low, the SPD can be written as well as read.
PCLK/M		VDD3.3	Phase detector input (DRCG).
SYNCLK/N		VDD3.3	Phase detector input (DRCG).
REFCLK		VDD3.3	Reference clock (DRCG).
CTM-DRCG	1	RSL	Clock from external DRCG to master routed to last device in channel. Positive polarity.
CTMN- DRCG	I	RSL	Clock from external DRCG to master routed to last device in channel. Negative polarity.
VDD3.3			Supply voltage for DRCG
VCMOS			CMOS I/O Voltage. Used for signals CMD, SCK, SIN, SOUT.
VDD			Supply voltage for the RDRAM core and interface logic.
VREF			Logic threshold reference voltage for RSL signals.

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

Physical Layout Dimensions

Top view layout dimensions (millimeters)

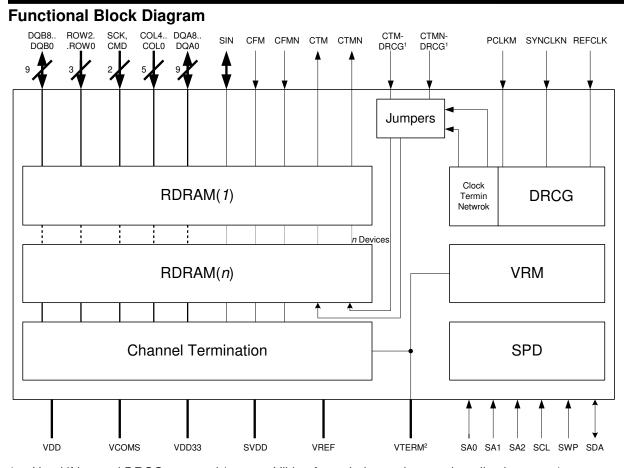
256MB NexMod with BGA connector vertical dimensions

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

Physical Layout Dimensions (cont'd)

128MB NexMod with BGA connector vertical dimensions



64MB NexMod with BGA connector vertical dimensions

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

- 1. Used if internal DRCG not used (contact Viking for ordering options and application notes)
- 2. Used if internal VRM not used (contact Viking for ordering options and application notes)

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage applied to any RSL or CMOS signal pad with respect to Gnd	V _{IABS}	-0.3 ~ V _{DD} + 0.3	V
Voltage on VDD with respect to Gnd	$V_{DD,ABS}$	-0.5 ~ V _{DD} + 1.0	V
Storage temperature	T _{STORE}	-50 ~ 100	°C
Operating junction temperature	Tj _{MAX}	100	°C
Operating heat spreader surface temperature	TC _{MAX}	92	°C
Operating and storage humidity (non-condensing)	RH _{STORE} , RH _{OP}	95	%RH

Note: Permanent device damage may occur if 'ABSOLUTE MAXIMUM RATINGS' are exceeded. Functional operation should be restricted to recommended operating condition. Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

Recommended operating conditions (Voltages referenced to GND, TA = 0 to 70°C, VDD / VCMOS = 2.5 ± 0.13V)

Parameter	and Conditions	Symbol	Min	Max	Unit
Supply voltage (Note 1)		V_{DD}	2.50 - 0.13	2.50 + 0.13	V
CMOS I/O power supply for	r 2.5V controllers (Note 2)	.,	V_{DD}	V_{DD}	
CMOS I/O power supply for	r 1.8V controllers (Note 2)	V _{CMOS}	1.80 - 0.1	1.80 + 0.2	V
Reference voltage (Note 1)		V_{REF}	1.4 - 0.2	1.4 + 0.2	V
Serial Presence Detect- po	sitive power supply	V_{SPD}	1.8	3.6	V
RSL input low voltage	800 MHz versions (A,B) 1066 MHz versions (L)	- V _{DIL}	V _{REF} – 0.5	$V_{REF} - 0.2$ $V_{REF} - 0.15$	٧
RSL input high voltage	800 MHz versions (A,B) 1066 MHz versions (L)	- V _{DIH}	V _{REF} + 0.2 V _{REF} + 0.15	V _{REF} + 0.5	V
CMOS input low voltage (N	lote 3)	VIL, CMOS	-0.3	$V_{CMOS} / 2 - 0.25$	V
CMOS input high voltage (Note 4)	VIH, CMOS	$V_{CMOS} / 2 + 0.25$	$V_{CMOS} + 0.3$	V
CMOS output low voltage	@ IOL = 1mA	VOL, CMOS	-	0.3	V
CMOS output high voltage		VOH, CMOS	V _{CMOS} – 0.3	-	V
Reference current @ V _{REF}	max	IREF	-10xno.RDRAMs ⁶	10xno.RDRAMs ⁶	μΑ
RSL output low current	800 MHz versions (A,B)	ı		90.0	mA
(Note 5)	1066 MHz versions (L)	l _{OL}		90.0	IIIA
RSL output high current @	(0<= VOUT <=Vdd)	ЮН	-10	10	μΑ
CMOS input leakage curre	nt @ (0<= V _{CMOS} <=Vdd)	I _L , CMOS	-160	160	μΑ

Notes:

- 1. See Direct RDRAM component datasheet for more details
- 2. VCMOS must be present at all times Vdd is applied.
- 3. Undershoot is limited to -0.7V for a duration less than 5ns.
- 4. Overshoot is limited to VCMOS + 0.7V for a duration less than 5ns.
- 5. Devices in manual current control mode, i.e. all output device legs of one device are sinking current.
- 6. Number of RDRAM devices in a NexMod: 8 for 256/288MB; 4 for 128/144MB; 2 for 64/72MB

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

Doc. # PSNRXXXETX0XXCXX ■ Revision D ■ Created By: Brian Ouellette

Page 10 of 14

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted, TA = 0 to 70 °C)

Darameter	Cumahal	Test Condition	Euca	288MB	144MB	72MB	Unit	Note
Parameter	Symbol	rest Condition	Freq.	Max	Max	Max		
Read Current	1 1	One RDRAM in Read, balance in NAP	800	628	612	604	mΛ	1, 2
nead Current	I _{DD} 1	mode	1066	778	762	754	mA	1, 2
Read Current	1 2	One RDRAM in Read, balance in Standby	800	1265	885	695	mΛ	1, 2
nead Current	I _{DD} 2	mode	1066	1485	1065	855	mA	
Read Current	1 2	One RDRAM in Read, balance in Active	800	1545	1005	735	mΛ	1, 2
nead Current	I _{DD} 3	mode	1066	1870	1230	910	mA	1, 2
Write Current	1 4	One RDRAM in Write, balance in NAP mode	800	608	592	584	mΛ	1, 2
Write Current	I _{DD} 4	One ADAAW III Write, balance iii NAF mode	1066	768	752	74	mA	1, 2
Muita Oumant		One RDRAM in Write, balance in Standby	800	1245	865	675	^	1 0
Write Current	I _{DD} 5	mode	1066	1475	1055	845	mA	1, 2
Mile Oursell		One RDRAM in Write, balance in Active	800	1525	985	715	^	1.0
Write Current	I _{DD} 6	mode	1066	1860	1220	900	mA	1, 2

Notes:

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

^{1.} Actual power will depend on individual RDRAM component specifications, memory controller and usage patterns. Power does not include Refresh Current.

^{2.} I/O current is a function of the number of bits=1. Add 290mA assuming 50% of data bits=1 and the following conditions: VDD = 2.5V, VTERM = 1.8V, V REF = 1.4V and VDIL = V REF - 0.5V.

AC ELECTRICAL SPECIFICATIONS

Symbol	Parameter an	Min	Тур	Max	Unit	
Z_L	Module Impedance of RSL Signals		25.2	28	30.8	Ω
Z _{UL-CMOS}	Module Impedance of SCK and CN	/ID signals	23.8	28	32.2	Ω
T_PD	Propagation Delay, all RSL signals		-	2.5	3.0	ns
ΔT_PD	Propagation delay variation of RSL	-30		30	ps	
ΔT_PD -cmos	Propagation delay variation of SCk average clock delay a	-250		250	ps	
$\Delta T_{PD-SCK,CMD}$	Propagation delay variation of CMI	Signal with respect to SCK signal	-200		200	ps
V _□ /V _{IN}	Attenuation Limit	800MHz	-	-	27	%
V 🗆 / V IN	Attenuation Limit	1066MHz	-	-	35	76
V _{XF} /V _{IN}	Forward crosstalk coefficient (300p rise time @ 20%-80%)	-	10.0	12.0	%	
V _{XB} /V _{IN}	Backward crosstalk coefficient (300 rise time @ 20%-80%)	-	2.0	4.0	%	
R _{DC}	DC Resistance Limit		-	1.5	1.9	Ω

Notes:

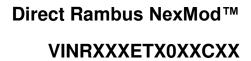
- TPD or Average clock delay is defined as the average delay from finger to finger of all RSL clock nets (CTM, CTMN, CFM, and CFMN)
- 2. If the NexMod™ module meets the following specification, then it is compliant to the specification. If an actual NexMod™ module does not meet these specifications, the specification can be adjusted by using the "Adjusted ∆TPD Specification" table.

ADJUSTED ATpd SPECIFICATION

(Note 1)

Symbol	Parameter and Conditions	Adjusted Min/Max	Abso Min /		Unit
ΛIDD	Propagation delay variation of RSL signals with respect to TPD for 4 and 8 device modules	+/-[17+(18*N*∆Z0)]	-30	30	ps

Notes:


1. Where: N = number of RDRAM devices installed on the NexMod™ module, ∆Z0 = delta Z0% = (max Z0 − min Z0)/(min Z0) Max Z0 and min Z0 are obtained from the loaded (high) impedance coupons of all RSL layers on the module

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

Doc. # PSNRXXXETX0XXCXX ■ Revision D ■ Created By: Brian Ouellette

Page 12 of 14

Viking NexMod™ Part Numbering Scheme

VR A B CCC D E F GG H I (J K) / (L M) (Example: VRNR512ET016LCSE)

	Form Factor	Technology	Capacity	Correction	Data Termination	Connector	IC Qty	Module Speed	Temp	Chip Manufacturer & Die Revision	Customer Specific
	Α	В	ccc	D	E	F	GG	н	ı	JK	LM
VI = Viking Tin Lead	N = NexMod TM	R = RAMBUS	064 = 64MB	E = ECC	T = On board term	0 = BGA Interposer	02	A= 40ns/800MHz	C = Commercial	S = Samsung	As required
VR = Viking Lead Free			128 = 128Mb	N = Non ECC		2 = 2 PGA connectors	04	B = 45ns/800MHz	l = Industrial	E = Elpida	
			256 = 256MB				08	L = 32ns/1066MHz			
			512 = 512MB				16				
·											

Viking Technology"2950 Red Hill Ave "Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

Doc. # PSNRXXXETX0XXCXX ■ Revision D ■ Created By: Brian Ouellette

Page 13 of 14

REVISION HISTORY

Revision	Release Date	Description of Change	Checked By (Full Name)
Α	May 5, 2006	Release combined PS002028 and PS002029 under new family spec number	Brian Ouellette
В	June 8, 2006	Remove PGA part numbers	Brian Ouellette
С	February 13, 2007	Add AC part numbers to configuration table	Brian Ouellette
C1	September 4, 2007	Correct 244MB to 288MB on page 11	Brian Ouellette
C2	November 21, 2011	Update header and footer	Brian Ouellette
D	January 17, 2018	Revise logo and company address. Add 512MB and only VINR128ET004LCEB-C VINR256ET008LCEB-C VRNR512ET216LCEB	

STATEMENT OF COMPLIANCE

Viking Technology(tm), Sanmina-SCI Corporation ("Viking") shall use commercially reasonable efforts to provide components, parts, materials, products and processes to Customer that do not contain: (i) lead, mercury, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE) above 0.1% by weight in homogeneous material or (ii) cadmium above 0.01% by weight of homogeneous material, except as provided in any exemption(s) from RoHS requirements (including the most current version of the "Annex" to Directive 2002/95/EC of 27 January, 2003), as codified in the specific laws of the EU member countries. Viking strives to obtain appropriate contractual protections from its suppliers in connection with the RoHS Directives.

All printed circuit boards (PCBs) have a flammability rating of UL94V-0.

Viking Technology 2950 Red Hill Ave Costa Mesa, CA 92626 Office: 714.913.2200 Fax: 714.913.2202 Website: http://www.vikingtechnology.com

This Data Sheet is subject to change without notice.

Doc. # PSNRXXXETX0XXCXX ■ Revision D ■ Created By: Brian Ouellette

Page 14 of 14