imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

VN808-E

Octal channel high-side driver

Datasheet - production data

PowerSO-36

Features

Туре	R _{DS(on)} ⁽¹⁾	I _{OUT}	V _{CC}
VN808-E	150 m Ω	0.7 A	45 V

1. Per channel

- V_{CC}/2 compatible input
- Junction overtemperature protection
- Case overtemperature protection for thermal independence of the channels
- Current limitation
- Short-circuit load protection
- Undervoltage shutdown

- Protection against loss of ground
- Very low standby current
- Compliance to 61000-4-4 IEC test up to 4 kV

Description

The VN808-E is a monolithic device, realized in STMicroelectronics VIPower M0-3 technology, intended to drive any kind of load with one side connected to ground. Active current limitation combined with thermal shutdown and automatic restart, protect the device against overload. In overload conditions, the channel turns OFF and ON again automatically in order to maintain the junction temperature between T_{TSD} and T_B. If this condition makes case temperature reach T_{CSD}, overloaded channels are turned OFF and restart only when case temperature decreases down to T_{CB}. Non-overloaded channels continue to operate normally. The device automatically turns OFF in case of ground pin disconnection. This device is especially suitable for industrial applications conform to IEC 61131.

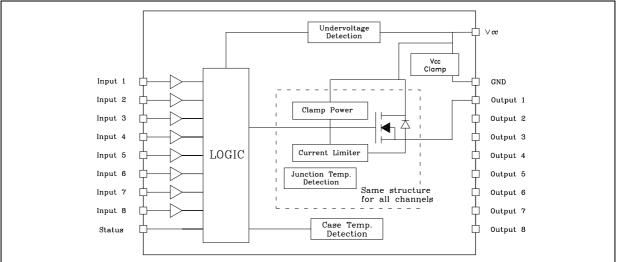


Figure 1. Internal schematic

December 2013

DocID11455 Rev 12

This is information on a product in full production.

Contents

9	Revision history
8	Ordering information
	7.3 Tape and reel shipment information
	7.2 Tube shipment information 17
	7.1 Footprint recommended data 16
7	Package mechanical data 14
6	Reverse polarity protection13
5	Switching time waveforms 10
4	Current, voltage conventions and internal diagram
3	Pin connections
2	Electrical characteristics
1	Maximum ratings

1 Maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	45	V
-I _{GND}	DC ground reverse current TRAN ground reverse current (pulse duration < 1 ms)	-250 -6	mA A
I _{OUT}	DC output current	Internally limited	А
-I _{OUT}	Reverse DC output current	-2	Α
I _{IN}	DC input current	± 10	mA
V _{IN}	Input voltage range	-3/+V _{CC}	V
V _{ESD}	Electrostatic discharge (R = $1.5 \text{ k}\Omega$; C = 100 pF)	2000	V
P _{TOT}	Power dissipation at T _C = 25 °C	96	W
EAS	Single pulse avalanche energy per channel 8 channels driven simultaneously ($T_{AMB} = 125 \ ^{\circ}C$, $I_{OUT} = 0.6 \ A \ per \ channel$)	1.15	J
TJ	Junction operating temperature	Internally limited	°C
Т _С	Case operating temperature	Internally limited	°C
T _{STG}	Storage temperature	-40 to 150	°C

Table 2. Thermal data

Symbol	Parameter		Value	Unit
R _{th(JC)}	Thermal resistance junction-case	Max.	1.3	°C/W
R _{th(JA)}	Thermal resistance junction-ambient ⁽¹⁾	Max.	50	°C/W

 When mounted on FR4 printed circuit board with 0.5 cm² of copper area (at least 35 μm think) connected to all TAB pins.

2 Electrical characteristics

10.5 V < V_{CC} < 32 V; - 40 °C < T_J < 125 °C; unless otherwise specified.

Table 3. Power section							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{CC}	Operating supply voltage		10.5		45	V	
V _{USD}	Undervoltage shutdown		7		10.5	V	
R _{ON}	On-state resistance	I _{OUT} = 0.5 A; T _J = 25 °C I _{OUT} = 0.5 A; T _J = 125 °C		150	185 280	mΩ mΩ	
۱ _S	Supply current	Off-state; $V_{CC} = 24 V$; $T_{CASE} = 25 °C$ On-state (all channels ON); $V_{CC} = 24 V$, $T_{CASE} = 100 °C$			150 12	μA mA	
I _{LGND}	Output current at turn-off	$V_{CC} = V_{STAT} = V_{IN} = V_{GND} = 24 V$ $V_{OUT} = 0 V$			1	mA	
I _{L(off)}	Off-state output current	$V_{IN} = V_{OUT} = 0 V_{;}$	0		5	μA	
V _{OUT(off)}	Off-state output voltage	V _{IN} = 0 V _, I _{OUT} = 0 A			3	V	
t _{d(Vccon)}	Power-on delay time from V_{CC} rising edge	Figure 7 on page 10		1		ms	

Table	3	Power	section
Table	υ.		300000

Table 4. Switching ($V_{CC} = 24 V$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{ON}	Turn-on time	$R_L = 48 \Omega$ from 80% V _{OUT} (see <i>Figure 6</i>)	-	50	100	μs
t _{OFF}	Turn-off time	$R_L = 48 \Omega$ to 10% V _{OUT} (see <i>Figure 6</i>)	-	75	150	μs
dVOUT/dt(on)	Turn-on voltage slope	$R_L = 48 \Omega$ from V _{OUT} = 2.4 V to V _{OUT} = 19.2 V (see <i>Figure 6</i>)	-	0.7		V/µs
dVOUT/dt(off)	Turn-off voltage slope	$R_L = 48 \Omega$ from V _{OUT} = 21.6 V to V _{OUT} = 2.4 V (see <i>Figure 6</i>)	-	1.5		V/µs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{INL}	Input low level				V _{CC} /2-1	V
I _{INL}	Low level input current	$V_{IN} = V_{CC} / 2 - 1 V$	80		650	μA
V _{INH}	Input high level		$V_{CC}/2+1$			V
I _{INH}	High level input current	$V_{IN} = V_{CC} / 2 + 1 V$		150	260	μA
V _{I(HYST)}	Input hysteresis voltage			0.6		V
I _{IN}	Input current	$V_{IN} = V_{CC} = 32 V$			300	μA

Table 5. Input pin

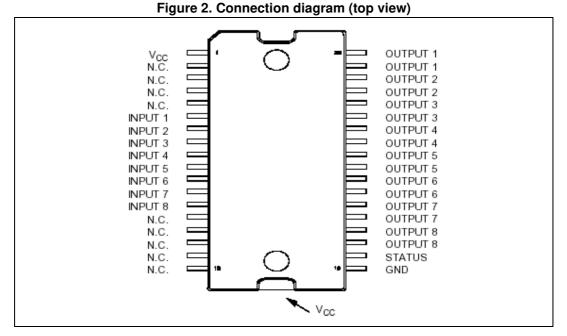

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{CSD}	Case shutdown temperature		125	130	135	°C
T _{CR}	Case reset temperature		110			°C
T _{CHYST}	Case thermal hysteresis		7	15		°C
T _{TSD}	Junction shutdown temperature		150	175	200	°C
T _R	Junction reset temperature		135			°C
T _{HYST}	Junction thermal hysteresis		7	15		°C
I _{lim}	DC short-circuit current per channel	$V_{CC} = 24 V_{;} R_{LOAD} = 10 m\Omega$	0.7		1.7	А
V _{demag}	Turn-off output clamp voltage	l _{OUT} = 0.5 A; L = 6 mH	V _{CC} -57	V _{CC} -52	V _{CC} -47	V

Table 7. Status pin

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{HSTAT}	High level output current	V_{CC} = 1832 V; R_{STAT} = 1 k Ω (Fault condition)	2	3	4	mA
I _{LSTAT}	Leakage current	Normal operation; $V_{CC} = 32 V$			0.1	μA
V _{CLSTAT}	Clamp voltage	I _{STAT} = 1 mA I _{STAT} = -1 mA	6.0	6.8 -0.7	8.0	V V

3 Pin connections

Table 8. Pin functions

Pin	Symbol	Function
ТАВ	V _{CC}	Positive power supply voltage
1	V _{CC}	Positive power supply voltage
2,3,4,5	NC	Not connected
6	Input 1	Input of channel 1
7	Input 2	Input of channel 2
8	Input 3	Input of channel 3
9	Input 4	Input of channel 4
10	Input 5	Input of channel 5
11	Input 6	Input of channel 6
12	Input 7	Input of channel 7
13	Input 8	Input of channel 8
14,15,16,17,18	NC	Not connected
19	GND	Logic ground
20	STATUS	Common open source diagnostic for overtemperature
21,22	Output 8	High-side output of channel 8
23,24	Output 7	High-side output of channel 7
25, 26	Output 6	High-side output of channel 6

Pin	Symbol	Function
27. 28	Output 5	High-side output of channel 5
29, 30	Output 4	High-side output of channel 4
31, 32	Output 3	High-side output of channel 3
33, 34	Output 2	High-side output of channel 2
35, 36	Output 1	High-side output of channel 1

Table 8. Pin functions (continued)

4 Current, voltage conventions and internal diagram

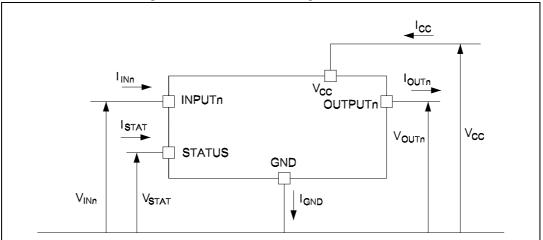
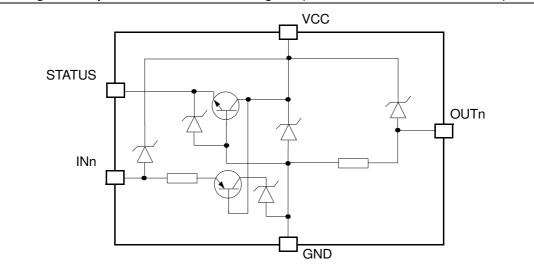
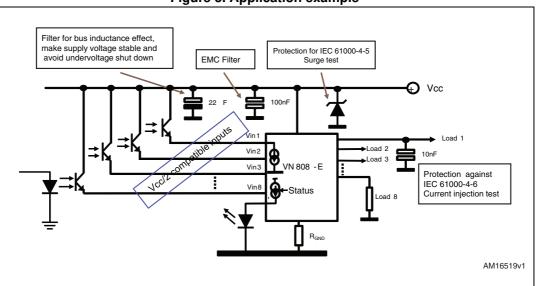



Figure 3. Current and voltage conventions



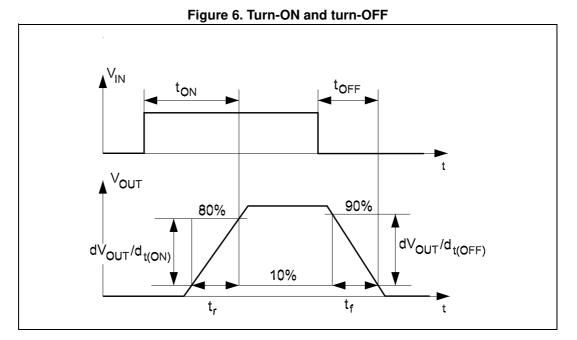
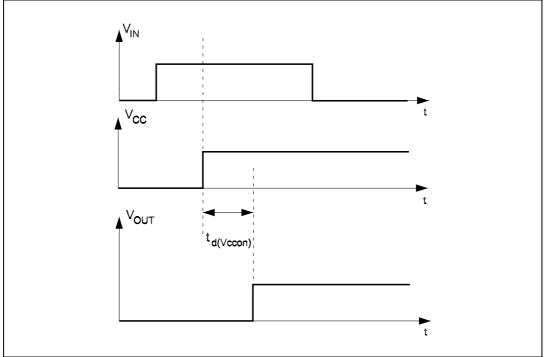
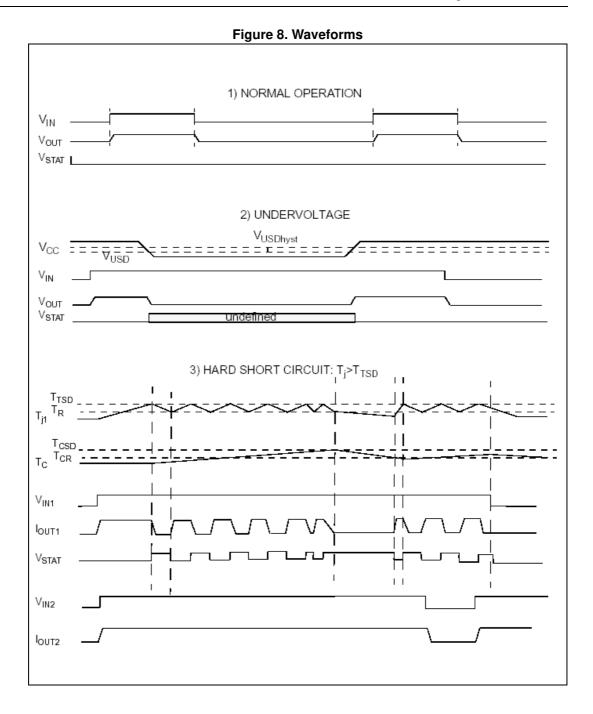
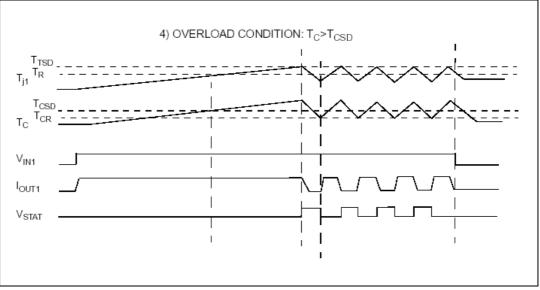

Figure 5. Application example

Table	9	Truth	table
TUDIC	υ.	main	anc


Conditions	INPUTn	OUTPUTn	STATUS
Normal operation	L H	L H	L
Current limitation	L H	L X	L L
Overtemperature (see waveforms 3, 4 <i>Figure 8</i>) -> T _J > T _{TSD}	L H	L L	L H
Undervoltage	L H	L	X X


5 Switching time waveforms



A7

6 Reverse polarity protection

Reverse polarity protection can be implemented on board using two different solutions:

- 1. Placing a resistor (R_{GND}) between IC GND pin and load GND
- 2. Placing a diode between IC GND pin and load GND

If option 1 is selected, the minimum resistance value has to be selected according to the following equation:

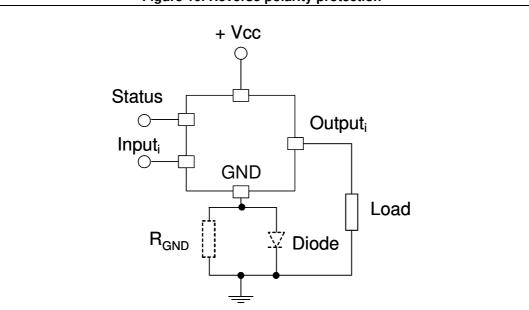
Equation 1

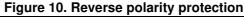
 $R_{GND} \ge V_{CC}/I_{GND}$

where I_{GND} is the DC reverse ground pin current and can be found in *Section 1: Maximum ratings* of this datasheet.

Power dissipated by R_{GND} (when $V_{CC} < 0$: during reverse polarity situations) is:

Equation 2


 $\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{CC})^2/\mathsf{R}_\mathsf{GND}$


If option 2 is selected, the diode has to be chosen by taking into account VRRM > $|V_{cc}|$ and its power dissipation capability:

Equation 3

 $P_D \ge I_S^* V_f$

In normal conditions (no reverse polarity) due to the diode, there is a voltage drop between GND of the device and GND of the system.

This schematic can be used with any type of load.

Note:

Package mechanical data 7

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

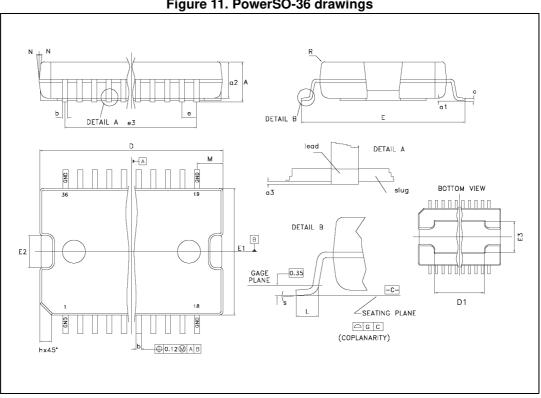


Figure 11. PowerSO-36 drawings

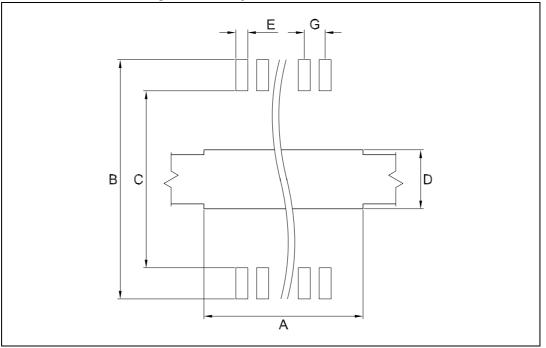


	Table 10. PowerSO-36 mechanical data mm			
Dim.				
	Min.	Тур.	Max.	
А			3.60	
a1	0.10		0.30	
a2			3.30	
a3	0		0.10	
b	0.22		0.38	
С	0.23		0.32	
D (1)	15.80		16.00	
D1	9.40		9.80	
E	13.90		14.50	
E1 (1)	10.90		11.10	
E2			2.90	
E3	5.8		6.2	
е		0.65		
e3		11.05		
G	0		0.10	
Н	15.50		15.90	
h			1.10	
L	0.80		1.10	
Ν			10°	
S	0°		8°	

Table 10. PowerSO-36 mechanical data

7.1 Footprint recommended data

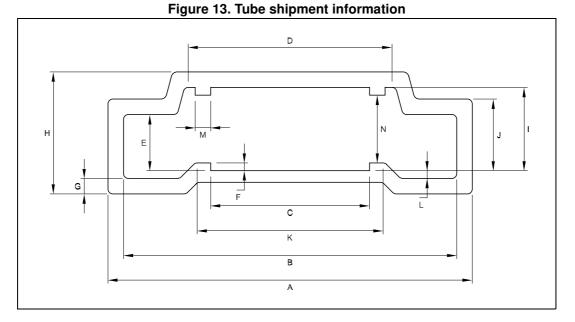
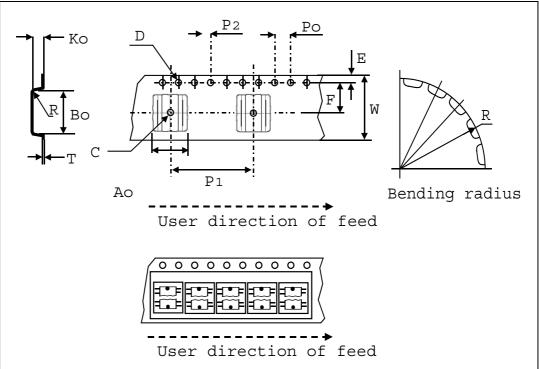

Figure 12. Footprint recommended data

Table 11. Footprint data

Dim.	mm
А	9.5
В	14.7-15.0
С	12.5-12.7
D	6.3
E	0.42
G	0.65

7.2 Tube shipment information


Table 12. Tube mechanical data

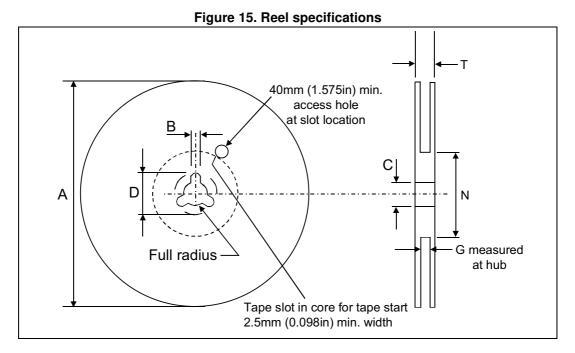
Dim.	mm	
A	18.80	
В	17.2 ±0.2	
С	8.20 ±0.2	
D	10.90 ±0.2	
E	2.90 ±0.2	
F	0.40	
G	0.80	
Н	6.30	
I	4.30 ±0.2	
J	3.7 ±0.2	
К	9.4	
L	0.40	
М	0.80	
N 3.50 ±0.2		

Base quantity 31 pcs Bulk quantity 310 pcs

DocID11455 Rev 12

7.3 Tape and reel shipment information

Figure 14. Tape specifications


Table 13. Tape mechanical data

Dim.	mm
D	1.50 +0.1/0
E	1.75 ±0.1
Po	4.00 ±0.1
T max.	0.40
D1 min.	1.50
F	11.5 ±0.05
K max.	6.50
P2	2.00 ±0.1
R	50
W	24.00 ±0.30
P1	24.00
Ao, Bo, Ko	0.05 min. to 1.0 max.

Base quantity 600 pcs Bulk quantity 600 pcs

DocID11455 Rev 12

Table 14. Reel mechanical data

Dim.	mm	
Tape size	24.0 ±0.30	
A max.	330.0	
B min.	1.5	
С	13.0 ±0.20	
D min.	20.2	
N min.	60	
G	24.4 +2/-0	
T max.	30.4	

8 Ordering information

Table 15. Order code

Order code	Package	Packaging
VN808-E	PowerSO-36	Tube
VN808TR-E	PowerSO-36	Tape and reel

9

Revision history

Table 16. Document revision history		
Date	Revision	Changes
13-Sep-2005	1	Initial release
1-Mar-2007	2	Document reformatted
12-Mar-2007	3	Typo in <i>Figure 3.</i>
26-Mar-2007	4	Typo note Table 2.
07-Jul-2008	5	Added: Section 6 on page 13
04-Aug-2008	6	Added: Figure 12: Footprint recommended data on page 16
25-Aug-2009	7	Updated Section 6: Reverse polarity protection
24-Feb-2010	8	Updated Section 7: Package mechanical data
08-Nov-2012	9	Changed <i>Figure 5</i> . Minor text changes to improve the readability.
19-Nov-2012	10	Added maximum value to I _{INL} parameter in <i>Table 5</i> .
31-Jul-2013	11	Updated Section 7.1: Footprint recommended data.
18-Dec-2013	12	Replaced L_{MAX} parameter by EAS parameter in <i>Table 1</i> . Added T _J condition to <i>Table 3</i> . Updated <i>Section 6</i> .

Table 16. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID11455 Rev 12

