imall

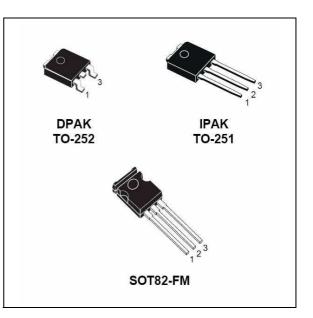
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


VND7N04, VND7N04-1 VNK7N04FM

"OMNIFET": Fully autoprotected power MOSFET

Features

Туре	V _{clamp}	R _{DS(on)}	l _{lim}
VND7N04	42 V	0.14 Ω	7 A
VND7N04-1	42 V	0.14 Ω	7 A
VNK7N04FM	42 V	0.14 Ω	7 A

- Linear current limitation
- Thermal shut down
- Short circuit protection
- Integrated clamp
- Low current drawn from input pin
- Diagnostic feedback through input pin
- ESD protection
- Direct access to the gate of the power MOSFET (analog driving)
- Compatible with standard power MOSFET

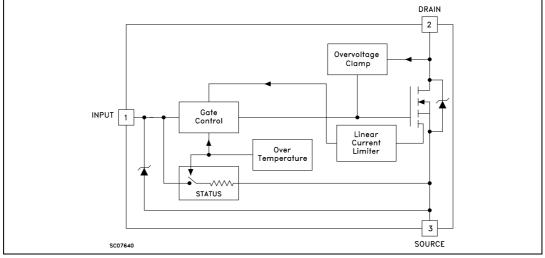
Description

The VND7N04, VND7N04-1 and VNK7N04FM are monolithic devices made using STMicroeletronics VIPower M0 Technology, intended for replacement of standard power MOSFETS in DC to 50 KHz applications. Built-in thermal shut-down, linear current limitation and overvoltage clamp protect the chip in harsh enviroments.

Fault feedback can be detected by monitoring the voltage at the input pin.

Table 1. Device summary

Part number	Order code
VND7N04	VND7N04, VND7N04-1-E, VND7N04-E, VND7N0413TR, VND7N04TR-E
VND7N04-1	VND7N04-1
VNK7N04FM	VNK7N04FM


Contents

1	Block diagram	3
2	Electrical specification	4
	2.1 Absolute maximum rating	4
	2.2 Thermal data	4
	2.3 Electrical characteristics	4
3	Protection features	7
4	Package information 1	13
5	Revision history 1	16

1 Block diagram

2 Electrical specification

2.1 Absolute maximum rating

		Va		
Symbol	Parameter	DPAK IPAK	SOT-82FM	Unit
Vds	Drain-source voltage ($V_{in} = 0$)	Internally	clamped	V
Vin	Input voltage	1	18	
lD	Drain current	Internally limited		А
lr	Reverse DC output current	-7		А
Vesd	Electrostatic discharge (C = 100 pF, R=1.5 K Ω)	2000		V
Ptot	Total dissipation at $T_c = 25 $ °C	60	9	W
Tj	Operating junction temperature	Internally limited		C
Tc	Case operating temperature	Internally limited		°C
Tstg	Storage temperature	-55 to 150		°C

2.2 Thermal data

Table 3. Thermal data

		DPAK/IPAK	SOT82-FM	
Rthj-case	Thermal resistance junction-case max	3.75	14	°C/W
Rthj-amb	Thermal resistance junction-ambient max	100	100	°C/W

2.3 Electrical characteristics

Table 4. Electrical characteristics: off

(-40 < Tj < 125 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CLAMP}	Drain-source clamp voltage	I _D = 200 mA V _{in} = 0	32	42	52	V
V _{CLTH}	Drain-source clamp threshold voltage	$I_D = 2 \text{ mA } V_{in} = 0$	31			V
V _{INCL}	Input-source reverse clamp voltage	I _{in} = -1 mA	-1.1		-0.25	V
I _{DSS}	Zero input voltage drain current (V _{in} = 0)	$V_{DS} = 13 V V_{in} = 0$ $V_{DS} = 25 V V_{in} = 0$			75 200	μΑ μΑ
I _{ISS}	Supply current from input pin	V _{DS} = 0 V V _{in} = 10 V		250	550	μA

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN(th)}	Input threshold voltage	$V_{DS} = V_{in} I_D + I_{in} = 1 \text{ mA}$	0.8		3	V
		V _{in} = 10 V I _D = 3.5 A			0.14	Ω
		V _{in} = 10 V I _D = 3.5 A V _{in} = 5 V I _D = 3.5 A			0.28	Ω
	Statia drain aguras an ragistanas	-40 < T _i < 25 ℃				
R _{DS(on)}		$V_{in} = 10 \text{ V I}_{D} = 3.5 \text{ A}$			0.28	Ω
	V _{in} = 5 V I _D = 3.5 A			0.56	Ω	
		T _j = 125 ℃				

Table 5. Electrical characteristics: on

Table 6. Electrical characteristics: dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g_{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 13 V I _D = 3.5 A	2	5		S
C _{oss}	Output capacitance	$V_{DS} = 13 \text{ V f} = 1 \text{ MHz } V_{in} = 0$		250	500	pF

1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

Table 7.	Electrical characteris	stics: switching

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _d (on)	Turn-on delay time	V _{DD} = 15 V I _d = 3.5 A		50	150	ns
t _r	Rise time	$V_{gen} = 10 \text{ V R}_{gen} = 10 \Omega$		60	180	ns
t _d (off)	Turn-off delay time	(see Figure 26)		130	300	ns
t _f	Fall time			50	200	ns
t _d (on)	Turn-on delay time	V _{DD} = 15 V I _d = 3.5 A		140	500	ns
t _r	Rise time	$V_{gen} = 10 \text{ V R}_{gen} = 1000 \Omega$		0.4	1.1	μs
t _d (off)	Turn-off delay time	(see Figure 26)		2.5	7	μs
t _f	Fall time			1	4	μs
(di/dt)on	Turn-on current slope	$\begin{split} V_{\text{DD}} &= 15 \text{ V I}_{\text{D}} = 3.5 \text{ A} \\ V_{\text{in}} &= 10 \text{ V R}_{\text{gen}} = 10 \ \Omega \end{split}$		50		A/μs
Qi	Total input charge	$V_{DD} = 12 \text{ V I}_{D} = 3.5 \text{ A V}_{in} = 10 \text{ V}$		18		nC

Table 8.	Electrical characteristics: source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 3.5 A V _{in} = 0			1.7	V
t _{rr} ⁽²⁾	Reverse recovery time	I _{SD} = 3.5 A di/dt = 100 A/μs		40		ns
Q _{rr} ⁽²⁾	Reverse recovery charge	V _{DD} = 30 V T _j = 25 ℃		0.2		μC
I _{RRM} ⁽²⁾	Reverse recovery current	(see test circuit, Figure 28)		3.6		А

1. Pulsed: Pulse duration = 300 $\mu s,$ duty cycle 1.5 %

2. Parameters guaranteed by design/characterization

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
l _{lim}	Drain current limit	$V_{in} = 10 V V_{DS} = 13 V$	4	7	11	A
		V _{in} = 5 V V _{DS} = 13 V	4	7	11	A
t _{dlim} ⁽¹⁾	Step response	$V_{in} = 10 V$		13	20	μs
alim	Current limit	$V_{in} = 5 V$		15	25	μs
T _{jsh} ⁽¹⁾	Overtemperature shutdown		150			C
$T_{jrs}^{(1)}$	Overtemperature reset		135			°C
ı (1)	Fault sink current	V _{in} = 10 V V _{DS} = 13 V		50		mA
$I_{gf}^{(1)}$	Fault Sink current	$V_{in} = 5 V V_{DS} = 13 V$		20		mA
$E_{as}^{(1)}$	Single pulse avalanche energy	starting T _j = 25°C V _{DD} = 20 V V _{in} = 10 V R _{gen} = 1 K Ω L = 30 mH	0.4			J

 Table 9.
 Electrical characteristics: protection

1. Pulsed: Pulse duration = 300 $\mu s,$ duty cycle 1.5 %

3 Protection features

During normal operation, the Input pin is electrically connected to the gate of the internal power MOSFET. The device then behaves like a standard power MOSFET and can be used as a switch from DC to 50 KHz. The only difference from the user's standpoint is that a small DC current (liss) flows into the Input pin in order to supply the internal circuitry.

The device integrates:

- Overvoltage clamp protection: internally set at 42 V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductive loads.
- Linear current limiter circuit: limits the drain current ld to llim whatever the Input pin voltage. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the overtemperature threshold T_{jsh}.
- Overtemperature and short circuit protection: these are based on sensing the chip temperature and are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Overtemperature cutout occurs at minimum 150 °C. The device is automatically restarted when the chip temperature falls below 135 °C.
- Status feedback: in the case of an overtemperature fault condition, a Status Feedback is provided through the Input pin. The internal protection circuit disconnects the input from the gate and connects it instead to ground via an equivalent resistance of 100 Ω. The failure can be detected by monitoring the voltage at the Input pin, which will be close to ground potential.

Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL Logic circuit (with a small increase in RDS(on)).

GC16960 % Κ 10⁰ 100 P_{tot} =KR_{thJ-c} 10 Z _{th} 50 0.05 =0.01 SINGLE PHIS 10^{-2} 10⁻² 10^{-5} 10^{-4} 10^{-3} 10^{-1} $t_p(s)$ 0 50 100 T_J (°C) Figure 4. **Output characteristics** Figure 5. Transconductance GC68960 GC68970 $|_{D}(A)$ $g_{fs}(S)$ $V_{IN} = 5 \div 10V$ 8 4.5V 6 4٧ 6 4 3.5V $V_{DS} = 13V$ 2 2 3۷ 2.5V 0 1 2 3 4 $I_D(A)$ 16 V_{DS}(V) 0 4 8 12 Figure 6. Static drain-source on resistance Figure 7. Static drain-source on resistance vs input voltage (part 1/2) GC68980 $R_{DS(on)}$ (m Ω) GC68990 $R_{DS(on)}$ (m Ω) V_{IN} = 3.5V 200 I_D=3.5A 500

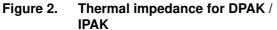
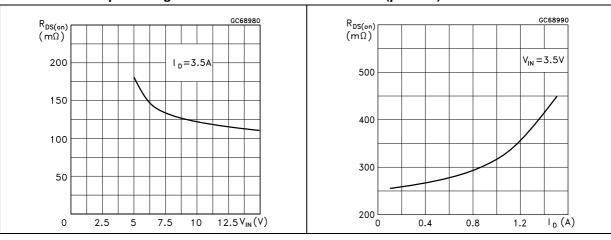
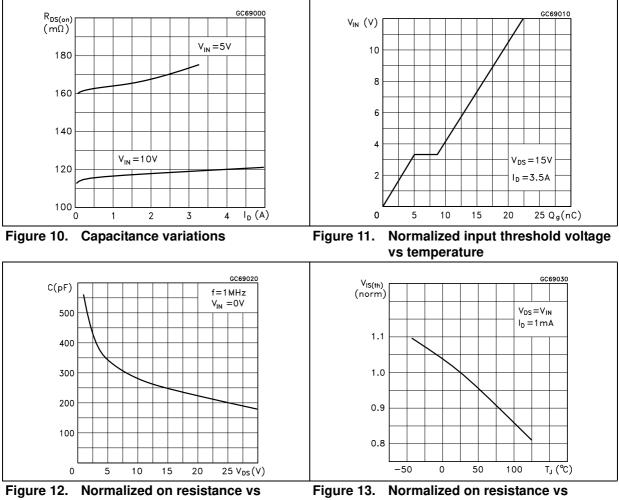
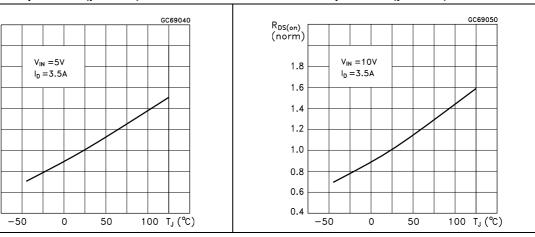




Figure 3. Derating curve



temperature (part 1/2)

temperature (part 2/2)

R_{DS(on)} (norm)

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

57

Figure 14. Turn-on current slope(part 1/2)

Figure 15. Turn-on current slope(part 2/2)

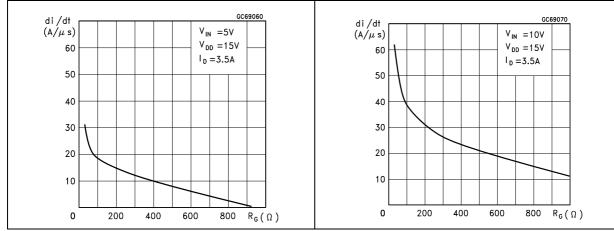


Figure 16. Turn-off drain-source voltage slope Figure 17. Turn-off drain-source voltage slope (part 1/2) (part 2/2)

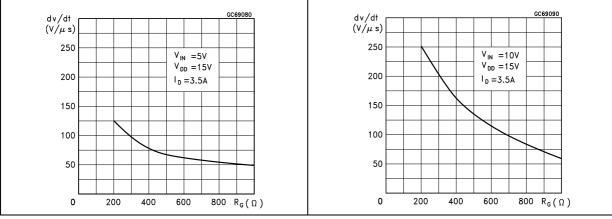
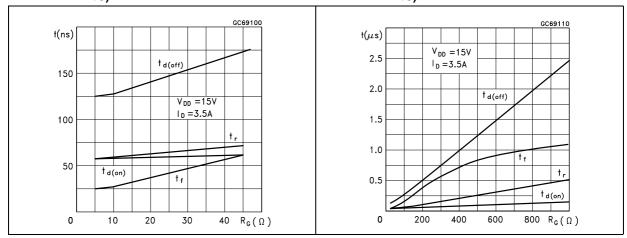
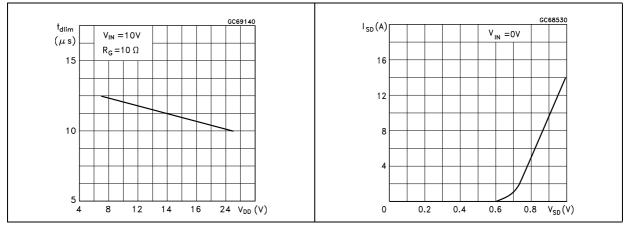



Figure 18. Switching time resistive load (part Figure 19. Switching time resistive load (part 1/3) 2/3)



GC69120 GC69130 $I_{lim}(A)$ t(ns) $V_{DD} = 15V$ 7.6 $I_D = 3.5A$ $R_g = 4.7\Omega$ 175 tr 150 $V_{IN} = 10V$ 7.4 V_{DD}=13V 125 t_{d(off)} 100 7.2 75 t f 50 7.0 25 t_{d(on)} 0 6.8 9 $V_{IN}(V)$ -50 0 50 100 T_J (℃) 4 5 6 7 8 3

Figure 20. Switching time resistive load (part Figure 21. Current limit vs junction 3/3) temperature

Figure 22. Step response current limit

Figure 23. Source drain diode forward characteristics

SC07872

Figure 24. Unclamped inductive load test circuits

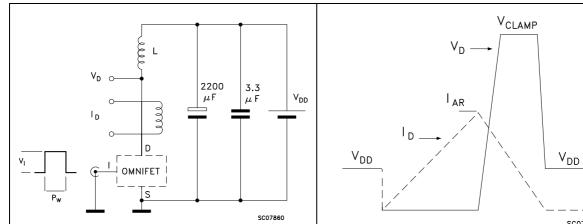
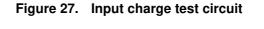
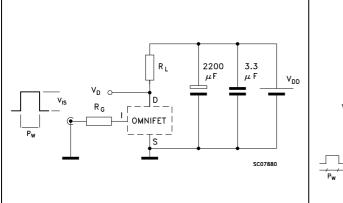




Figure 26. Switching times test circuits for resistive load

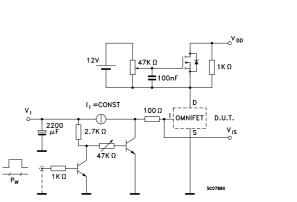
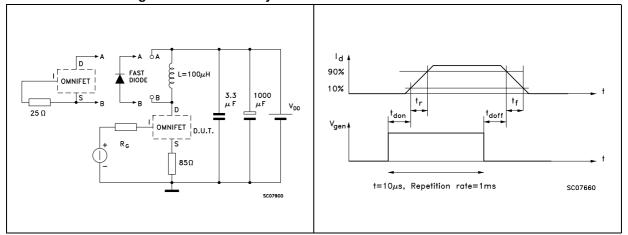
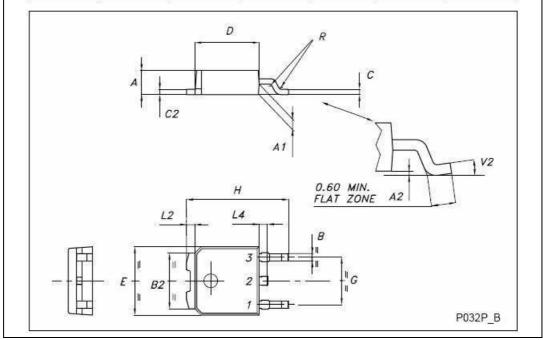



Figure 28. Test circuit for inductive load Figure 29. Waveforms switching and diode recovery times


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

ECOPACK[®] is an ST trademark.

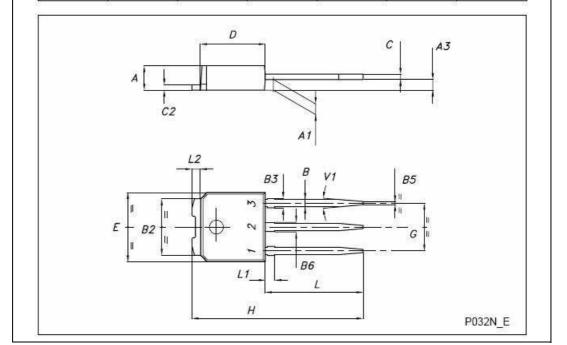
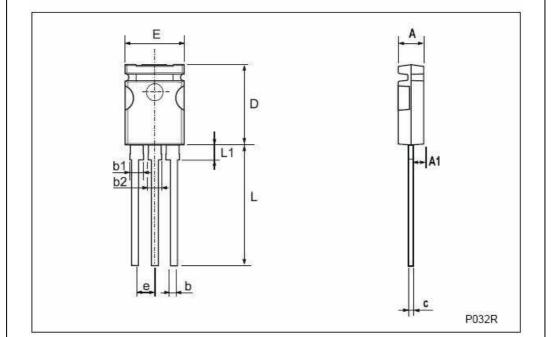

DIM.	mm			inch		
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03	2	0.23	0.001		0.009
В	0.64		0.90	0.025	2	0.035
B2	5.20		5.40	0.204		0.213
С	0.45	3	0.60	0.018		0.024
C2	0.48	8	0.60	0.019		0.024
D	6.00	X	6.20	0.236		0.244
E	6.40		6.60	0.252		0.260
G	4.40	с. 6	4.60	0.173		0.181
н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60	2	1.00	0.024		0.039
V2	0°	8	8°	0°		0°

Figure 30. TO-252 (DPAK) mechanical data

DIM.		mm			inch	
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.20	56 26	2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A3	0.70		1.30	0.028		0.051
В	0.64	9 25	0.90	0.025		0.035
B2	5.20	¢	5.40	0.204		0.213
B3			0.85			0.033
B5		0.30			0.012	
B6	2 2		0.95	l		0.037
С	0.45		0.60	0.018		0.024
C2	0.48	2	0.60	0.019		0.024
D	6.00	2	6.20	0.237		0.244
Е	6.40		6.60	0.252		0.260
G	4.40	2	4.60	0.173		0.181
н	15.90	6 5	16.30	0.626		0.642
L	9.00		9.40	0.354		0.370
L1	0.80	2	1.20	0.031		0.047
L2		0.80	1.00		0.031	0.039
V1		10°			10°	


Figure 31. TO-251 (IPAK) mechanical data

DIM.	mm			inch			
-7900160 	MIN.	TYP.	MAX.	MIN.	TYP.	MAX	
A	2.85		3.05	1.122		1.200	
A1	1.47		1.67	0.578		0.657	
b	0.40		0.60	0.157		0.236	
b1	1.4		1.6	0.551		0.630	
b2	1.3		1.5	0.511		0.590	
C	0.45		0.6	0.177		0.236	
D	10.5	8	10.9	4.133		4.291	
е	2.2		2.8	0.866		1.102	
E	7.45	8. 9.	7.75	2.933		3.051	
L	15.5		15.9	6.102		6.260	
L1	1.95	65	2.35	0.767	6	0.925	

Figure 32. SOT-82FM mechanical data

5 Revision history

Table 10.	Document revision history	/
-----------	---------------------------	---

Date	Revision	Changes
21-Jun-2004	0.1	Initial release.
18-Mar-2009	1	Document reformatted. Added Table 1: Device summary on page 1. Updated Section 4: Package information on page 13

5 Revision history

Date	Revision	Changes
21-Jun-2004	1	Initial release.
25-Sep-2013	2	Updated Disclaimer

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID4336 Rev 2