imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

VNB14NV04, VND14NV04 VND14NV04-1, VNS14NV04

"OMNIFET II" fully autoprotected Power MOSFET

Features

ТҮРЕ	R _{DS(on)}	l _{lim}	V _{clamp}
VNB14NV04 VND14NV04 VND14NV04-1 VNS14NV04	35 mΩ	12 A	40 V

- Linear current limitation
- Thermal shutdown
- Short circuit protection
- Integrated clamp
- Low current drawn from input pin
- Diagnostic feedback through input pin
- ESD protection
- Direct access to the gate of the Power MOSFET (analog driving)
- Compatible with standard Power MOSFET

Description

The VNB14NV04, VND14NV04, VND14NV04-1 and VNS14NV04 are monolithic devices made using STMicroelectronics VIPower™ M0 technology, intended for replacement of standard power MOSFETS in DC to 50 KHz applications. Built-in thermal shutdown, linear current limitation and overvoltage clamp protect the chip in harsh environments.

Fault feedback can be detected by monitoring the voltage at the input pin.

Table 1. Device summary

Package	Tube	Tube (lead free)	Tape and reel	Tape and reel (lead free)
D ² PAK	VNB14NV04	VNB14NV04-E	VNB14NV0413TR	VNB14NV04TR-E
TO-252 (DPAK)	VND14NV04	VND14NV04-E	VND14NV0413TR	VND14NV04TR-E
TO-251 (IPAK)	VND14NV04-1	VND14NV04-1-E	-	-
SO-8	VNS14NV04	-	-	-

Contents

1	Bloc	k diagram
2	Elec	trical specification6
	2.1	Absolute maximum rating 6
	2.2	Thermal data
	2.3	Electrical characteristics 7
3	Prot	ection features
4	Pack	age thermal data
	4.1	DPAK thermal data 18
	4.2	SO-8 thermal data 20
	4.3	D ² PAK thermal data 21
5	Pack	age information
	5.1	ECOPACK [®]
	5.2	TO-251 (IPAK) mechanical data 24
	5.3	D ² PAK mechanical data 25
	5.4	TO-252 (DPAK) mechanical data 27
	5.5	SO-8 mechanical data 28
6	Revi	sion history

List of tables

Device summary	L
Absolute maximum rating	3
Thermal data	7
Electrical characteristics	7
DPAK thermal parameter)
D ² PAK thermal parameter	2
TO-251 (IPAK) mechanical data	1
D ² PAK mechanical data	3
TO-252 (DPAK) mechanical data	7
SO-8 mechanical data	3
Document revision history)
	Device summary1Absolute maximum rating6Thermal data7Electrical characteristics7DPAK thermal parameter19D²PAK thermal parameter22TO-251 (IPAK) mechanical data24D²PAK mechanical data26TO-252 (DPAK) mechanical data27SO-8 mechanical data28Document revision history30

List of figures

Figure 1.	Block diagram	. 5
Figure 2.	Current and voltage conventions	. 6
Figure 3.	Switching time test circuit for resistive load	10
Figure 4.	Test circuit for diode recovery times	10
Figure 5.	Unclamped inductive load test circuits	11
Figure 6.	Unclamped inductive waveforms	11
Figure 7.	Input charge test circuit	11
Figure 8.	Source-drain diode forward characteristics	12
Figure 9.	Static drain source on resistance	12
Figure 10.	Derating curve	12
Figure 11.	Static drain-source on resistance vs. input voltage (part 1/2)	12
Figure 12.	Static drain-source on resistance vs. input voltage (part 2/2)	12
Figure 13.	Transconductance	12
Figure 14.	Static drain-source on resistance vs. id	13
Figure 15.	Transfer characteristics	13
Figure 16.	Turn-on current slope (part 1/2)	13
Figure 17.	Turn-on current slope (part 2/2)	13
Figure 18.	Input voltage vs. input charge	13
Figure 19.	Turn-off drain source voltage slope (part 1/2)	13
Figure 20.	Turn-off drain source voltage slope (part 2/2)	14
Figure 21.	Capacitance variations	14
Figure 22.	Switching time resistive load (part 1/2)	14
Figure 23.	Switching time resistive load (part 2/2)	14
Figure 24.	Output characteristics	14
Figure 25.	Normalized on resistance vs. temperature	14
Figure 26.	Normalized input threshold voltage vs. temperature	15
Figure 27.	Current limit vs. junction temperatures	15
Figure 28.	Step response current limit	15
Figure 29.	DPAK maximum turn-off current versus load inductance	16
Figure 30.	DPAK demagnetization.	16
Figure 31.	D ² PAK maximum turn-off current versus load inductance	17
Figure 32.	D ² PAK demagnetization	17
Figure 33.	DPAK PC board ⁽¹⁾	18
Figure 34.	DPAK R _{thi-amb} vs PCB copper area in open box free air condition	18
Figure 35.	DPAK thermal impedance junction ambient single pulse	19
Figure 36.	Thermal fitting model of an OMNIFET II in DPAK.	19
Figure 37.	SO-8 PC board ⁽¹⁾	20
Figure 38.	SO-8 R _{thi-amb} vs PCB copper area in open box free air condition	20
Figure 39.	$D^2 PAK \stackrel{\text{(I)}}{PC} \text{board}^{(1)}$	21
Figure 40.	D ² PAK R _{thi-amb} vs PCB copper area in open box free air condition	21
Figure 41.	D ² PAK thermal impedance junction ambient single pulse	22
Figure 42.	Thermal fitting model of an OMNIFET II in D ² PAK.	22
Figure 43.	TO-251 (IPAK) package dimension	24
Figure 44.	D ² PAK package dimension	25
Figure 45.	TO-252 (DPAK) package dimension	27
Figure 46.	SO-8 package dimension	28

1 Block diagram

2 Electrical specification

2.1 Absolute maximum rating

Table 2.	Absolute maximum rating
----------	-------------------------

Symbol	Baramatar	Value SO-8 DPAK IPAK D ² PA			llmit	
Symbol	Parameter			IPAK	D ² PAK	onit
V _{DS}	Drain-source voltage (V _{IN} =0 V)		Internally	clamped		V
V _{IN}	Input voltage		Internally	clamped		V
I _{IN}	Input current		+/-	20		mA
R _{IN MIN}	Minimum input series impedance		1	0		Ω
I _D	Drain current	Internally limited		А		
I _R	Reverse DC output current	-15		А		
V _{ESD1}	Electrostatic discharge (R=1.5 KΩ, C=100 pF)	4000		V		
V _{ESD2}	Electrostatic discharge on output pin only (R=330 Ω , C=150 pF)	16500		V		
P _{tot}	Total dissipation at T _c =25 °C	4.6	74	74	74	W
E _{MAX}	Maximum switching energy (L=0.4 mH; R _L =0 Ω ; V _{bat} =13.5 V; T _{jstart} =150 °C; I _L =18 A)	93 93		mJ		
Тj	Operating junction temperature	Internally limited		°C		
T _c	Case operating temperature	Internally limited		°C		
T _{stg}	Storage temperature		-55 to	150		°C

2.2 Thermal data

Table 3.Thermal data

Symbol	Parameter	Value				Unit
Symbol	Farameter	SO-8	DPAK	IPAK	D ² PAK	
Rthj-case	Thermal resistance junction-case max		1.7	1.7	1.7	°C/W
Rthj-lead	Thermal resistance junction-lead max	27				°C/W
Rthj-amb	Thermal resistance junction-ambient max	90 ⁽¹⁾	65 ⁽¹⁾	102	52 ⁽¹⁾	°C/W

When mounted on a standard single-sided FR4 board with 0.5 cm² of Cu (at least 35 μm thick) connected to all DRAIN pins. Horizontal mounting and no artificial air flow.

2.3 Electrical characteristics

-40 < Tj < 150 °C unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
Off								
V _{CLAMP}	Drain-source clamp voltage	V _{IN} =0 V; I _D =7 A	40	45	55	V		
V _{CLTH}	Drain-source clamp threshold voltage	V _{IN} =0 V; I _D =2 mA	36			V		
V _{INTH}	Input threshold voltage	V _{DS} =V _{IN} ; I _D =1 mA	0.5		2.5	V		
I _{ISS}	Supply current from input pin	V _{DS} =0 V; V _{IN} =5 V		100	150	μΑ		
V _{INCL}	Input-source clamp voltage	I _{IN} =1 mA I _{IN} =-1 mA	6 -1.0	6.8	8 -0.3	V		
I _{DSS}	Zero input voltage drain current (V _{IN} =0 V)	V _{DS} =13 V; V _{IN} =0 V; T _j =25 °C V _{DS} =25 V; V _{IN} =0 V			30 75	μΑ		
On								
R _{DS(on)}	Static drain-source on resistance				35 70	mΩ		
Dynamic	(Tj=25°C, unless otherwise speci	fied)						
g _{fs} ⁽¹⁾	Forward transconductance	V _{DD} = 13 V I _D = 7 A		18		S		
C _{oss}	Output capacitance	V _{DS} = 13 V f = 1 MHz V _{IN} = 0 V		400		pF		
Switching								
t _{d(on)}	Turn-on delay time			80	250	ns		
tr	Rise time	$V_{DD} = 15 V I_D = 7 A$ V = 5 V B = Bussue = 10 O		350	1000	ns		
t _{d(off)}	Turn-off delay time	(see <i>Figure 3</i>)		450	1350	ns		
t _f	Fall time			150	500	ns		

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{d(on)}	Turn-on delay time			1.5	4.5	μs
t _r	Rise time	$V_{DD} = 15 V I_d = 7 A$		9.7	30.0	μs
t _{d(off)}	Turn-off delay time	(see <i>Figure 3</i>)			25.0	μs
t _f	Fall time			10.2	30.0	μs
(di/dt) _{on}	Turn-on current slope	$V_{\text{DD}} = 15 \text{ V I}_{\text{D}} = 7 \text{ A}$ $V_{\text{gen}} = 5 \text{ V R}_{\text{gen}} = \text{R}_{\text{IN MIN}} = 10 \Omega$		16		A/µs
Qi	Total input charge	$V_{DD} = 12 \text{ V } I_D = 7 \text{ A } V_{in} = 5 \text{ V};$ $I_{gen} = 2.13 \text{ mA} (\text{see Figure 7})$		36.8		nC
Source d	rain diode					
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 7 A V _{in} = 0 V		0.8		V
t _{rr}	Reverse recovery time	I _{SD} = 7 A; di/dt = 40 A/μs		300		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 30 V L = 200 μH		0.8		μC
I _{RRM}	Reverse recovery current	(see test circuit, <i>Figure 4</i>)		5		Α
Protectio	n					
l _{lim}	Drain current limit	V _{IN} = 5 V; V _{DS} = 13 V	12	18	24	А
t _{dlim}	Step response current limit	V _{IN} = 5 V; V _{DS} = 13 V		45		μs
T _{jsh}	Over temperature shutdown		150	175	200	°C
T _{jrs}	Over temperature reset		135			°C
I _{gf}	Fault sink current	$V_{IN} = 5 V; V_{DS} = 13 V; T_j = T_{jsh}$	10	15	20	mA
E _{as}	Single pulse avalanche energy	starting $T_j = 25 \text{ °C}$; $V_{DD} = 24 \text{ V}$ $V_{IN} = 5 \text{ V}$; $R_{gen} = R_{IN \text{ MIN}} = 10 \Omega$; L = 24 mH (see <i>Figure 5</i> and <i>Figure 6</i>)	400			mJ

Table 4. Electrical characteristics (continued)

1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

3 Protection features

During normal operation, the input pin is electrically connected to the gate of the internal power MOSFET through a low impedance path.

The device then behaves like a standard power MOSFET and can be used as a switch from DC up to 50 KHz. The only difference from the user's standpoint is that a small DC current I_{ISS} (typ. 100 μ A) flows into the input pin in order to supply the internal circuitry.

The device integrates:

- Overvoltage clamp protection: internally set at 45 V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductive loads.
- Linear current limiter circuit: limits the drain current I_D to I_{lim} whatever the input pin voltages. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the over temperature threshold T_{ish}.
- Over temperature and short circuit protection: these are based on sensing the chip temperature and are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Over temperature cutout occurs in the range 150 to 190 °C, a typical value being 170 °C. The device is automatically restarted when the chip temperature falls of about 15 °C below shutdown temperature.
- Status feedback: in the case of an over temperature fault condition $(T_j > T_{jsh})$, the device tries to sink a diagnostic current lgf through the input pin in order to indicate fault condition. If driven from a low impedance source, this current may be used in order to warn the control circuit of a device shutdown. If the drive impedance is high enough so that the input pin driver is not able to supply the current I_{gf} , the input pin will fall to 0 V. This will not however affect the device operation: no requirement is put on the current capability of the input pin driver except to be able to supply the normal operation drive current I_{ISS} .

Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL Logic circuit.

Figure 3. Switching time test circuit for resistive load

Figure 5. Unclamped inductive load test circuits

Figure 7. Input charge test circuit

٧

Figure 6. Unclamped inductive waveforms

SC07872

Figure 8. Source-drain diode forward characteristics

Figure 11. Static drain-source on resistance vs. input voltage (part 1/2)

Figure 12. Static drain-source on resistance Figur vs. input voltage (part 2/2)

Figure 14. Static drain-source on resistance vs. id

0

Figure 19. Turn-off drain source voltage slope (part 1/2)

250 500 750 1000 1250 1500 1750 2000 2250 Rg(ohm)

0

0

Figure 20. Turn-off drain source voltage slope Figure 21. Capacitance variations (part 2/2)

Figure 22. Switching time resistive load (part Figure 23. Switching time resistive load (part 1/2) 2/2)

Figure 25. Normalized on resistance vs. temperature

Figure 26. Normalized input threshold voltage Figure 27. Current limit vs. junction vs. temperature temperatures

Figure 29. DPAK maximum turn-off current versus load inductance

Legend:

A= Single pulse at T_{Jstart}=150°C

B= Repetitive pulse at T_{Jstart}=100°C

C= Repetitive pulse at T_{Jstart}=125°C

Conditions:

V_{CC}=13.5 V

Values are generated with $R_L=0\Omega$

In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

Figure 30. DPAK demagnetization

Figure 31. D²PAK maximum turn-off current versus load inductance

Legend:

A= Single pulse at T_{Jstart}=150°C

B= Repetitive pulse at T_{Jstart}=100°C

C= Repetitive pulse at T_{Jstart}=125°C

Conditions:

V_{CC}=13.5 V

Values are generated with $R_L=0\Omega$

In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

Figure 32. D²PAK demagnetization

4 Package thermal data

4.1 DPAK thermal data

Figure 33. DPAK PC board⁽¹⁾

1. Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 60 mm x 60 mm, PCB thickness=2 mm, Cu thickness=35 μ m, Copper areas: from minimum pad lay-out to 8 cm²).

Figure 35. DPAK thermal impedance junction ambient single pulse

Pulse calculation formula

$$\begin{split} & Z_{TH\delta} \ = \ R_{TH} \cdot \delta + Z_{THtp}(1-\delta) \\ & \text{where} \ \delta \ = \ t_p / T \end{split}$$

Table 5. DPAK thermal parameter

Area/island(cm ²)	Footprint	6
R1 (°C/W)	0.1	
R2 (°C/W)	0.35	
R3 (°C/W)	1.20	
R4 (°C/W)	2	
R5 (°C/W)	15	
R6 (°C/W)	61	24
C1 (W.s/°C)	0.0006	
C2 (W.s/°C)	0.0021	
C3 (W.s/°C)	0.05	

Area/island(cm ²)	Footprint	6
C4 (W.s/°C)	0.3	
C5 (W.s/°C)	0.45	
C6 (W.s/°C)	0.8	5

 Table 5.
 DPAK thermal parameter (continued)

4.2 SO-8 thermal data

Figure 37. SO-8 PC board⁽¹⁾

1. Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 58 mm x 58 mm, PCB thickness=2 mm, Cu thickness=35 μ m, Copper areas: 0.14 cm², 0.6 cm², 1.6 cm²).

4.3 D²PAK thermal data

Figure 39. D²PAK PC board⁽¹⁾

1. Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 60 mm x 60 mm, PCB thickness=2 mm, Cu thickness=35 μ m, Copper areas: from minimum pad lay-out to 8 cm²).

Figure 40. $D^2PAK R_{thi-amb}$ vs PCB copper area in open box free air condition

Figure 42. Thermal fitting model of an OMNIFET II in D²PAK

Pulse calculation formula

$$\begin{split} & Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp}(1-\delta) \\ & \text{where } \delta = t_p / T \end{split}$$

Table 6.D²PAK thermal parameter

Area/island(cm ²)	Footprint	6
R1 (°C/W)	0.1	
R2 (°C/W)	0.35	
R3 (°C/W)	0.3	
R4 (°C/W)	4	
R5 (°C/W)	9	
R6 (°C/W)	37	22
C1 (W.s/°C)	0.0006	
C2 (W.s/°C)	2.10E-03	

Area/island(cm ²)	Footprint	6				
C3 (W.s/°C)	8.00E-02					
C4 (W.s/°C)	0.45					
C5 (W.s/°C)	2					
C6 (W.s/°C)	3	5				

 Table 6.
 D²PAK thermal parameter (continued)

5 Package information

5.1 ECOPACK[®]

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

ECOPACK[®] is an ST trademark.

5.2 TO-251 (IPAK) mechanical data

Table 7. TO-251 (IPAK) mechanical data

Dim	Millimeters		
Dini.	Min.	Тур.	Max.
А	2.2		2.4
A1	0.9		1.1
A3	0.7		1.3
В	0.64		0.9
B2	5.2		5.4

Dim	Millimeters						
Dini.	Min.	Тур.	Max.				
B3			0.85				
B5		0.3					
B6			0.95				
С	0.45		0.6				
C2	0.48		0.6				
D	6		6.2				
E	6.4		6.6				
G	4.4		4.6				
Н	15.9		16.3				
L	9		9.4				
L1	0.8		1.2				
L2		0.8	1				

Table 7. TO-251 (IPAK) mechanical data (continued)

5.3 D²PAK mechanical data

Figure 44. D²PAK package dimension

