

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

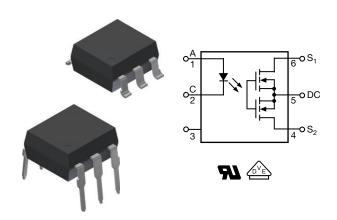
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

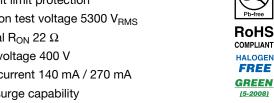
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





1 Form A Solid-State Relay

FEATURES

- · Current limit protection
- Isolation test voltage 5300 V_{RMS}
- Typical R_{ON} 22 Ω
- Load voltage 400 V
- Load current 140 mA / 270 mA
- · High surge capability
- · Clean bounce free switching
- Low power consumption
- High temperature range
- · Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

DESCRIPTION

The VOR1142 is an SPST normally open switch (1 form A) that can replace electromechanical relays in many applications. It is constructed using a GaAlAs IRED actuation control and MOSFETs for the switch output.

APPLICATIONS

- · General telecom switching
- Metering
- Security equipment
- Instrumentation
- Industrial controls
- Battery management systems
- · Automatic measurement equipment

AGENCY APPROVALS

- UL1577, file no. E52744
- DIN EN 60747-5-5 (VDE0884-5)

ORDERING INFORMATION			
V O R 1 1 4 2 PART NUMBER	# 6 # PACKAGE CONFIGURATION DIP-6 SMD-6 > 0.7 mm		
PACKAGE	UL, VDE		
SMD-6, tape and reel	VOR1142B6T		
SMD-6, tube	VOR1142B6		
DIP-6, tube	VOR1142A6		

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	CONDITION	SYMBOL	VALUE	UNIT					
INPUT	INPUT								
IRED continuous forward current		I _F	50	mA					
IRED reverse voltage		V_R	5	V					
Input power dissipation		P _{diss}	80	mW					
OUTPUT									
DC or peak AC load voltage		V_L	400	V					
Continuous load current (AC/DC configuration)		ΙL	140	mA					
Continuous load current (DC only configuration)		ΙL	270	mA					
SSR output power dissipation (continuous)		P _{diss}	550	mW					
SSR									
Ambient temperature range (1)		T _{amb}	-40 to +100	°C					
Storage temperature range		T _{stg}	-40 to +150	°C					
Soldering temperature	t = 10 s max.	T _{sld}	260	°C					

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability.
- (1) For continuous negative potential from output side to input side only 85 °C is allowed.

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	SYMBOL MIN.		MAX.	UNIT	
INPUT	INPUT						
IRED forward current, switch turn-on	$I_L = 100 \text{ mA}, t = 10 \text{ ms}$	I _{Fon}	-	0.27	2	mA	
IRED forward current, switch turn-off	V _L = 350 V	I _{Foff}	0.05	0.15	-	mA	
IRED forward voltage	I _F = 10 mA	V_{F}	-	1.36	1.5	>	
IRED reverse current	V _R = 5 V	I _R	-	-	10	μΑ	
OUTPUT							
On-resistance (AC/DC configuration)	$I_F = 5 \text{ mA}, I_L = 50 \text{ mA}$	R _{ON}	-	22	27	Ω	
On-resistance (DC only configuration)	$I_F = 5 \text{ mA}, I_L = 100 \text{ mA}$	R _{ON}	-	5.2	7	Ω	
Off-resistance	$I_F = 0 \text{ mA}, V_L = \pm 100 \text{ V}$	R _{OFF}	0.5	5000	-	GΩ	
Off-state leakage current	$I_F = 0 \text{ mA}, V_L = \pm 100 \text{ V}$	Io	-	< 1	100	nA	
	$I_F = 0 \text{ mA}, V_L = \pm 400 \text{ V}$	Io	-	6	500	nA	
Output capacitance (AC/DC configuration)	$I_F = 0 \text{ mA}, V_L = 1 \text{ V}, 1 \text{ MHz}$	Co	-	39	-	pF	
	$I_F = 0 \text{ mA}, V_L = 50 \text{ V}, 1 \text{ MHz}$	Co	-	6	-	pF	
Current limit (AC/DC configuration)	on) $I_F = 5 \text{ mA}, t = 5 \text{ ms}, V_L = \pm 6 \text{ V}$		170	300	450	mA	
TRANSFER							
Capacitance (input to output)	V _{ISO} = 1 V	C _{IO}	-	0.4	-	pF	

Note

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

PIN CONFIGURATION

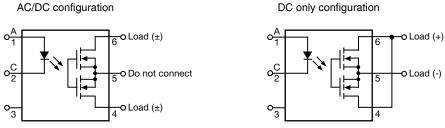
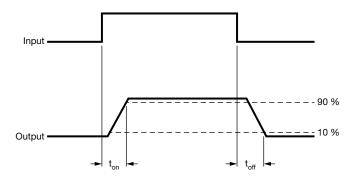



Fig. 1 - Pin Configuration

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Turn-on time	$I_F = 5 \text{ mA}, I_L = 50 \text{ mA}$	t _{on}	-	0.13	0.5	ms
Turn-off time	$I_F = 5 \text{ mA}, I_L = 50 \text{ mA}$	t _{off}	-	0.05	0.2	ms

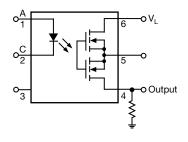


Fig. 2 - Timing Schematic

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		40/100/21	
Pollution degree	According to DIN VDE 0109		2	
Comparative tracking index	Insulation group IIIa	CTI	175	
Maximum rated withstanding isolation voltage	According to UL1577, t = 1 min	V_{ISO}	5300	V _{RMS}
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V_{IOTM}	8000	V _{peak}
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V_{IORM}	890	V _{peak}
Isolation resistance	$V_{IO} = 500 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}$	R _{IO}	≥ 10 ¹²	Ω
	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω
Output safety power		P _{SO}	720	mW
Input safety current		I _{SI}	240	mA
Safety temperature		T _S	175	°C
Creepage distance	DIP-6		≥ 7	mm
Clearance distance	DIP-6		≥ 7	mm
Creepage distance	SMD-6		≥ 8	mm
Clearance distance	SMD-6		≥ 8	mm
Insulation thickness		DTI	≥ 0.4	mm
Input to output test voltage, method B	V_{IORM} x 1.875 = V_{PR} , 100 % production test with t_M = 1 s, partial discharge < 5 pC	V_{PR}	1669	V _{peak}
Input to output test voltage, method A	V_{IORM} x 1.6 = V_{PR} , 100 % sample test with t_M = 10 s, partial discharge < 5 pC	V_{PR}	1424	V _{peak}

Note

• As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

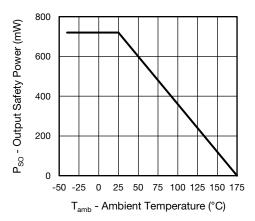


Fig. 3 - Safety Power Dissipation vs. Ambient Temperature

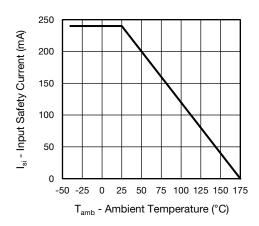


Fig. 4 - Safety Input Current vs. Ambient Temperature

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

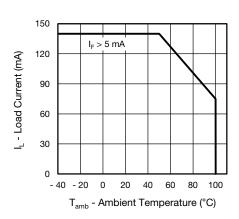


Fig. 5 - Maximum Load Current vs. Ambient Temperature

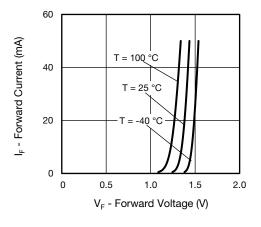


Fig. 7 - Forward Current vs. Forward Voltage

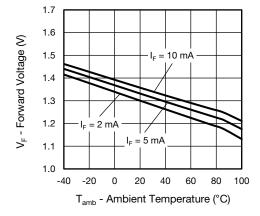


Fig. 6 - Forward Voltage vs. Ambient Temperature

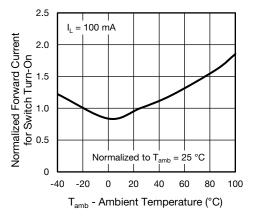


Fig. 8 - Normalized Forward Current for Switch Turn-On vs.

Ambient Temperature

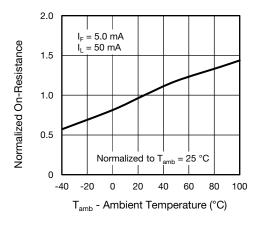


Fig. 9 - Normalized On-Resistance vs. Ambient Temperature

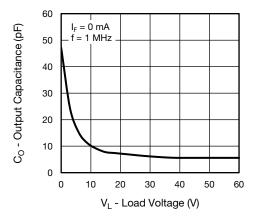


Fig. 10 - Output Capacitance vs. Load Voltage

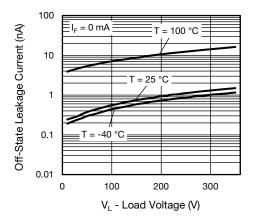


Fig. 11 - Off-State Leakage Current vs. Load Voltage

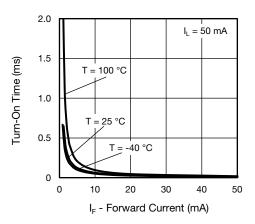


Fig. 12 - Turn-On Time vs. Forward Current

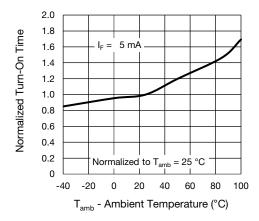


Fig. 13 - Normalized Turn-On Time vs. Ambient Temperature

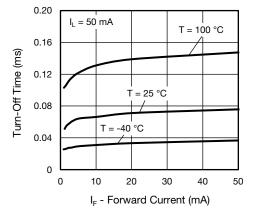


Fig. 14 - Turn-Off Time vs. Forward Current

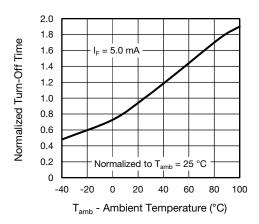
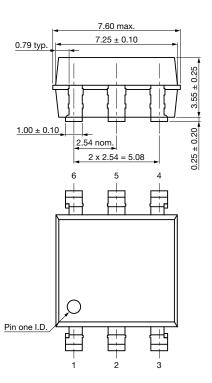
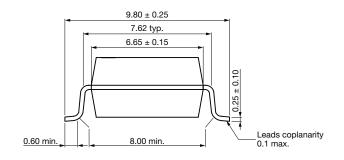
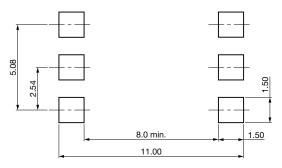
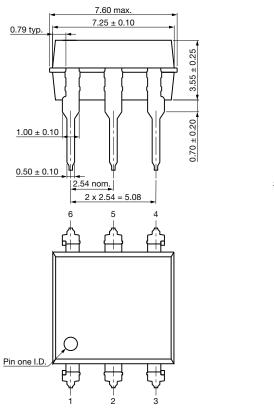




Fig. 15 - Normalized Turn-Off Time vs. Ambient Temperature


PACKAGE DIMENSIONS (in millimeters)

SMD-6


Recommended footprint

www.vishay.com

Vishay Semiconductors

DIP-6

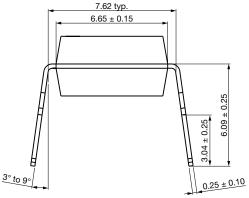


Fig. 16 - Package Drawings

PACKAGE MARKING

Fig. 17 - VOR1142

Note

• Package configuration (T, A, B) are not part of the package marking.

PACKING INFORMATION (in millimeters)

Note:

• Cummulative tolerance of 10 spocket holes is 0.20 mm

Fig. 18 - Tape and Reel Packing (1000 pieces on reel)

DEVICE PER TUBE					
TYPE	UNITS/TUBE	TUBES/BOX	UNITS/BOX		
SMD-6	50	40	2000		
DIP-6	50	40	2000		

SOLDER PROFILES

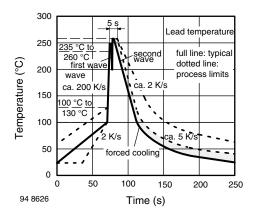


Fig. 19 - Wave Soldering Double Wave Profile According to J-STD-020 for DIP Devices

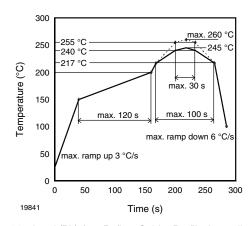


Fig. 20 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.