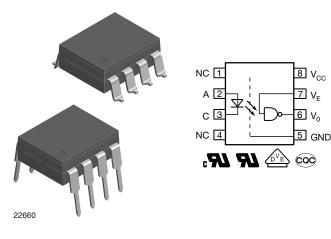
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Widebody, High Isolation, High Speed Optocoupler, 10 MBd

www.vishay.com

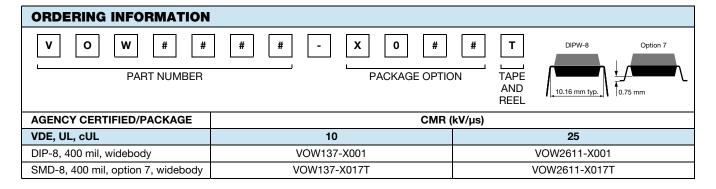
DESCRIPTION

Both 10 MBd widebody optocouplers consist of a GaAlAs infrared emitting diode, optically coupled with an integrated photo detector. The detector incorporating an integral Faraday shield provides a high level of noise isolation, required by high power switching applications.

Vishay's 10 MBd widebody couplers feature a high level of isolation distance, exhibiting an external creepage distance of > 10 mm. This makes these parts ideal for applications with working voltages exceeding 1000 V.

FEATURES

- External creepage > 10 mm
- Reinforced isolation
- Internal shield for very high input to output noise isolation
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>


APPLICATIONS

- Solar inverters
- Industrial motor drives
- Welding equipment
- · Isolated industrial communication
- · Ground loop elimination
- Noise isolation of sensitive circuits

AGENCY APPROVALS

The safety application model number covering all products in this datasheet is VOW137. This model number should be used when consulting safety agency documents.

- UL1577
- cUL
- DIN EN 60747-5-5 (VDE 0884)
- CQC

TRUTH TABLE					
LED	ENABLE	OUTPUT			
On	Н	L			
Off	Н	Н			
On	L	Н			
Off	L	Н			
On	NC	L			
Off	NC	Н			

RoHS

COMPLIANT

HALOGEN

FREE

GREEN

(5-2008)

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
INPUT	· · · ·					
Average forward current		I _F	20	mA		
Reverse input voltage		V _R	5	V		
Enable input voltage		VE	V _{CC} + 0.5 V	V		
Enable input current		Ι _Ε	5	mA		
Surge current	t = 100 μs	I _{FSM}	200	mA		
Input junction temperature		T _{J max.}	125	°C		
Output power dissipation		P _{diss}	35	mW		
OUTPUT			· · ·			
Supply voltage	1 min maximum	V _{CC}	7	V		
Output current		Ι _Ο	50	mA		
Output voltage		Vo	7	V		
Output junction temperature		T _{J max.}	125	°C		
Output power dissipation		P _{diss}	85	mW		
COUPLER			· · ·			
Isolation voltage	t = 1 min	V _{ISO}	5300	V _{RMS}		
Storage temperature		T _{stg}	-55 to +150	°C		
Operating temperature		T _{amb}	-40 to +100	۵°		
Lead solder temperature	for 10 s		260	°C		
Solder reflow temperature ⁽¹⁾			260	°C		

Notes

 Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

⁽¹⁾ Refer to reflow profile for soldering conditions for surface mounted devices (SMDW). Refer to wave profile for soldering conditions for through hole devices (DIPW).

RECOMMENDED OPERATING CONDITIONS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	MAX.	UNIT	
Operating temperature		T _{amb}	-40	100	°C	
Supply voltage		V _{CC}	4.5	5.5	V	
Input current low level		I _{FL}	0	250	μA	
Input current high level		I _{FH}	5	15	mA	
Logic high enable voltage		V _{EH}	2	V _{CC}	V	
Logic low enable voltage		V _{EL}	0	0.8	V	
Output pull up resistor		RL	330	4K	Ω	
Fanout	$R_L = 1 k\Omega$	Ν		5	-	

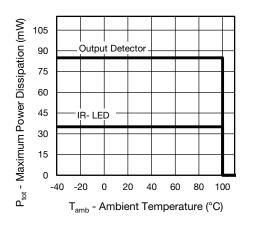


Fig. 1 - Dissipated Power vs. Ambient Temperature

ELECTRICAL CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
Input forward voltage	I _F = 10 mA	V _F	1.1	1.4	1.7	V
Reverse current	V _R = 5 V	I _R		0.01	10	μA
Input capacitance	$f = 1 \text{ MHz}, V_F = 0 \text{ V}$	CI		38		pF
OUTPUT						
Lligh lovel events	$V_{E} = 0.5 V, I_{F} = 0 mA$	I _{CCH}		4.3	10	mA
High level supply current	$V_E = V_{CC}, I_F = 0 \text{ mA}$	I _{CCH}		3.3		mA
	$V_{E} = 0.5 \text{ V}, I_{F} = 10 \text{ mA}$	I _{CCL}		4.3	13	mA
Low level supply current	$V_E = V_{CC}$, $I_F = 10 \text{ mA}$	I _{CCL}		3.3	6	mA
High level output current	$V_E = 2 V, V_O = 5.5 V, I_F = 250 \ \mu A$	I _{OH}		0.02	10	μA
Low level output voltage	$V_E = 2 V$, $I_F = 5 mA$, I_{OL} (sinking) = 13 mA	V _{OL}		0.2	0.6	V
Input threshold current	$V_{E} = 2 V, V_{O} = 0.6 V, I_{OL} (sinking) = 13 mA$	I _{TH}		2.4	5	mA
Input-output capacitance	$f = 1 \text{ MHz}, T_{amb} = 25 \text{ °C}$	CIO		0.9		pF
High level enable current	V _E = 2 V	I _{EH}		-0.6	-1.6	mA
Low level enable current	V _E = 0.5 V	I _{EL}		-0.8	-1.6	mA
High level enable voltage		V _{EH}	2			V
Low level enable voltage		V _{EL}			0.8	V

Notes

Over recommended temperature (T_{amb} = -40 °C to +100 °C), V_{CC} = 5 V, I_F = 7.5 mA unless otherwise specified. All typicals at T_{amb} = 25 °C, V_{CC} = 5 V.

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

SWITCHING CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Propagation delay time to high output level	$R_L = 350 \ \Omega, \ C_L = 15 \ pF$	t _{PLH}	20	49	100	ns
Propagation delay time to low output level	$R_L = 350 \ \Omega, \ C_L = 15 \ pF$	t _{PHL}	25	46	100	ns
Pulse width distortion	$R_L = 350 \ \Omega, \ C_L = 15 \ pF$	t _{PHL} - t _{PLH}		3.1	40	ns
Propagation delay skew	$R_L = 350 \ \Omega, \ C_L = 15 \ pF$	t _{PSK}		16	40	ns
Output rise time (10 % to 90 %)	$R_L = 350 \ \Omega, \ C_L = 15 \ pF$	t _r		14		ns
Output fall time (90 % to 10 %)	$R_L = 350 \ \Omega, \ C_L = 15 \ pF$	t _f		7		ns
Propagation delay time of enable from V_{EH} to V_{EL}		t _{ELH}		11		ns
Propagation delay time of enable from V_{EL} to V_{EH}	R_L = 350 Ω, C_L = 15 pF, V _{EL} = 0 V, V _{EH} = 3 V	t _{EHL}		9		ns

Notes

• Over recommended temperature (T_{amb} = -40 °C to +100 °C), V_{CC} = 5 V, I_F = 7.5 mA unless otherwise specified. All typicals at T_{amb} = 25 °C, V_{CC} = 5 V.

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

VOW137, VOW2611

Vishay Semiconductors

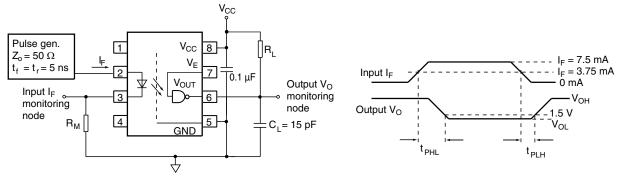


Fig. 2 - Test Circuit for $t_{\text{PLH}},\,t_{\text{PHL}},\,t_{\text{r}}$ and t_{f}

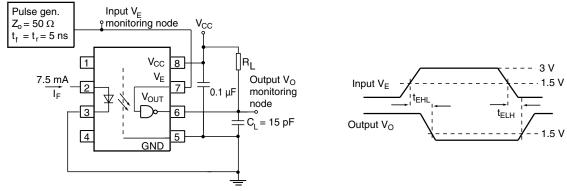


Fig. 3 - Test Circuit for t_{EHL}, and t_{ELH}

COMMON MODE TRANSIENT IMMUNITY							
PARAMETER	TEST CONDITION	DEVICE	SYMBOL	MIN.	TYP.	MAX.	UNIT
	$ V_{CM} = 1 \text{ kV}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}^{(1)(2)(3)(4)}$	VOW137	CM _H	10 000			V/µs
Common mode	$ V_{CM} = 1 \text{ kV}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}^{(1)(2)(5)}$	VOW2611	CM _H	25 000	40 000		V/µs
transient immunity	$ V_{CM} = 1 \text{ kV}, V_{CC} = 5 \text{ V}, I_F = 7.5 \text{ mA}^{(1)(2)(3)(4)}$	VOW137	CM _L	10 000			V/µs
	$ V_{CM} = 1 \text{ kV}, V_{CC} = 5 \text{ V}, I_F = 7.5 \text{ mA}^{(1)(2)(5)}$	VOW2611	CML	25 000	40 000		V/µs

Notes

⁽¹⁾ Over recommended temperature (T_{amb} = -40 °C to +100 °C), V_{CC} = 5 V, I_F = 7.5 mA unless otherwise specified. All typicals at T_{amb} = 25 °C, V_{CC} = 5 V.

⁽²⁾ Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

- $^{(3)}$ With pulling V_E to logic high state will improve the CMR performance.
- ⁽⁴⁾ VOW137 CMTI test circuit refer to figure 4.
- ⁽⁵⁾ VOW2611 CMTI test circuit refer to figure 5.

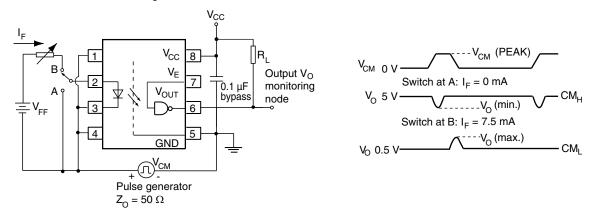
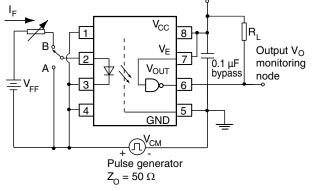


Fig. 4 - VOW137 Test Circuit for Common Mode Transient Immunity

4


Rev. 1.0, 07-Aug-14

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VOW137, VOW2611

Vishay Semiconductors

V_{CC}

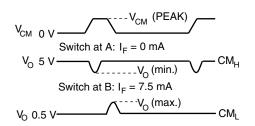
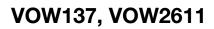



Fig. 5 - VOW2611 Test Circuit for Common Mode Transient Immunity

SAFETY AND INSULATION RATINGS					
PARAMETER		SYMBOL	VALUE	UNIT	
MAXIMUM SAFETY RATINGS					
Output safety power		P _{SO}	700	mW	
Input safety current	I _{si}	350	mA		
Safety temperature		Ts	150	°C	
Comparative tracking index		CTI	250		
INSULATION RATED PARAMETERS					
Maximum withstanding isolation voltage	ge t = 1 min	VISO	5300	V _{RMS}	
Maximum transient isolation voltage		V _{IOTM}	8000	V _{peak}	
Maximum repetitive peak isolation vol	age	VIORM	1414	V _{peak}	
Insulation resistance	$T_{amb} = 25 \text{ °C}, V_{DC} = 500 \text{ V}$	R _{IO}	≥ 10 ¹²	Ω	
Isolation resistance	T _{amb} = 100 °C, V _{DC} = 500 V	R _{IO}	≥ 10 ¹¹	Ω	
Input to output test voltage, method b	$V_{IORM} \times 1.875 = V_{PR}$, 100 % production test with $t_M = 1$ s, partial discharge < 5 pC	V _{PR}	2651	V _{peak}	
Input to output test voltage, method a	$V_{IORM} \times 1.6 = V_{PR}$, 100 % production test with $t_M = 10$ s, partial discharge < 5 pC	V _{PR}	2262	V _{peak}	
Climatic classification (according to IE	C 68 part 1)		55/100/21		
Environment (pollution degree in accordance to DIN VDE 0109)			2		
Clearance distance (DIP-8, widebody)	Clearance distance (DIP-8, widebody)			mm	
Creepage distance (DIP-8, widebody)			≥ 10	mm	
Insulation thickness		DTI	≥ 0.4	mm	

Note

As per IEC 60747-5-5, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits.

TYPICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)

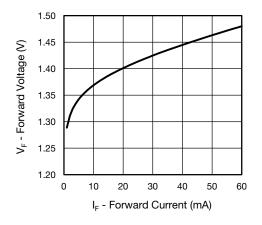


Fig. 6 - Forward Voltage vs. Forward Current

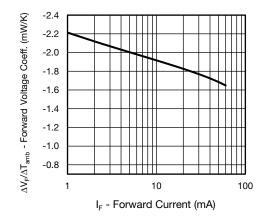


Fig. 7 - Forward Voltage Coefficient vs. Forward Current

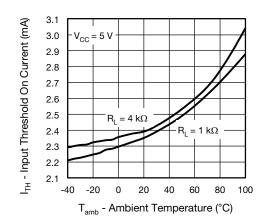


Fig. 8 - Input Threshold On Current vs. Ambient Temperature

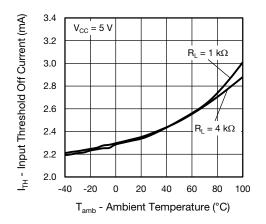


Fig. 9 - Input Threshold Off Current vs. Ambient Temperature

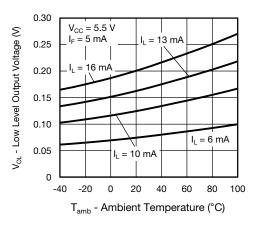


Fig. 10 - Low Level Output Voltage vs. Ambient Temperature

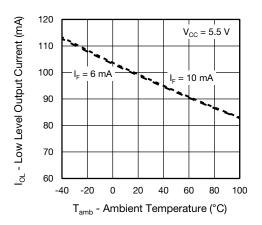


Fig. 11 - Low Level Output Current vs. Ambient Temperature

Rev. 1.0, 07-Aug-14

6

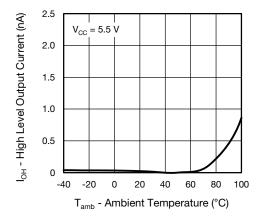


Fig. 12 - High Level Output Current vs. Ambient Temperature

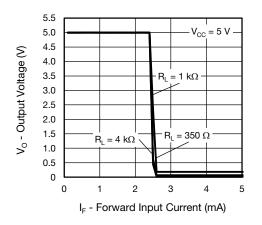


Fig. 13 - Output Voltage vs. Forward Current

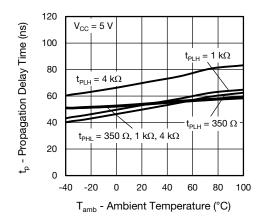


Fig. 14 - Propagation Delay vs. Ambient Temperature

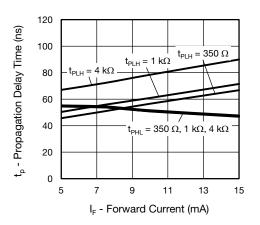


Fig. 15 - Propagation Delay vs. Forward Current

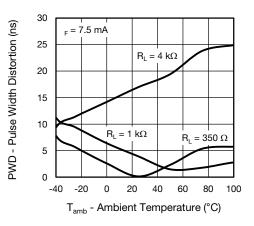


Fig. 16 - Pulse Width Distortion vs. Ambient Temperature

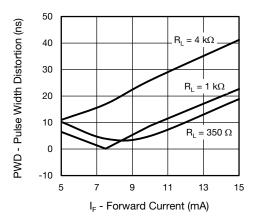


Fig. 17 - Pulse Width Distortion vs. Forward Current

7 For technical questions, contact: <u>optocoupleranswers@vishay.com</u>

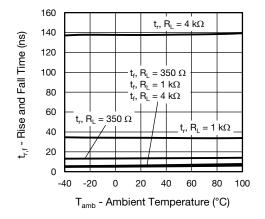


Fig. 18 - Rise and Fall Time vs. Ambient Temperature

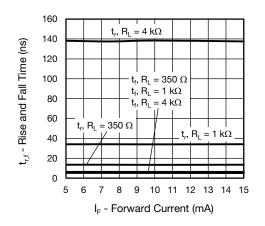


Fig. 19 - Rise and Fall Time vs. Forward Current

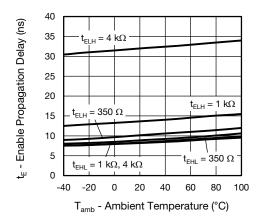


Fig. 20 - Enable Propagation Delay vs. Ambient Temperature

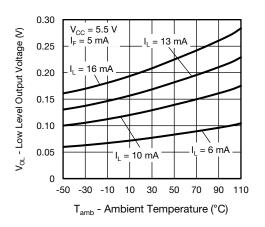
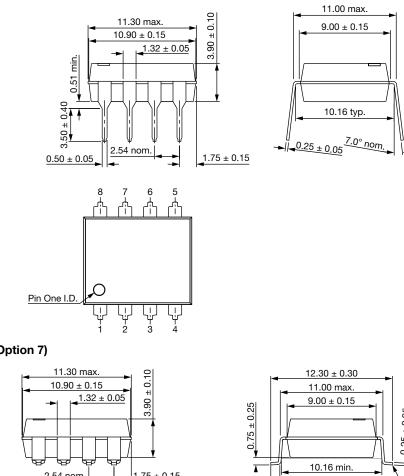
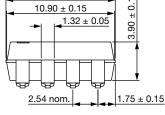
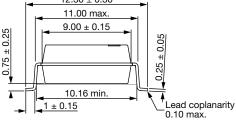
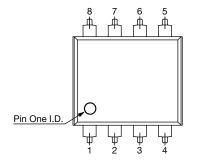
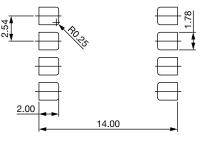



Fig. 21 - Low Level Output Voltage vs. Ambient Temperature




PACKAGE DIMENSIONS in millimeters


DIP-8, widebody


SMD-8, widebody, (Option 7)

PACKAGE MARKING (Example of VOW137-X017T)

Note

Tape and reel suffix (T) is not part of the package marking. ٠

Rev. 1.0, 07-Aug-14

9

For technical questions, contact: optocoupleranswers@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

PACKING INFORMATION (Tape and Reel)

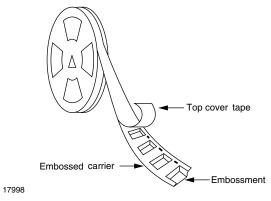


Fig. 22 - Tape and Reel Shipping Medium

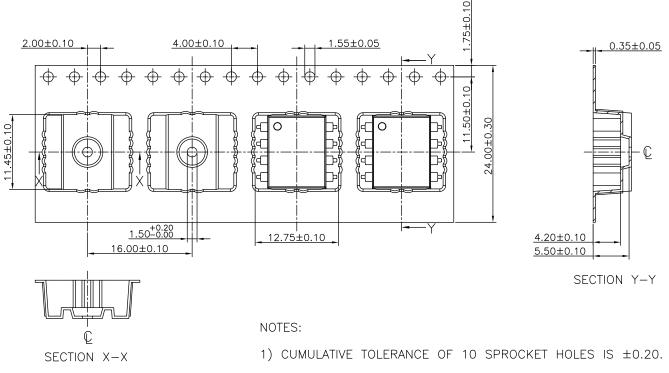
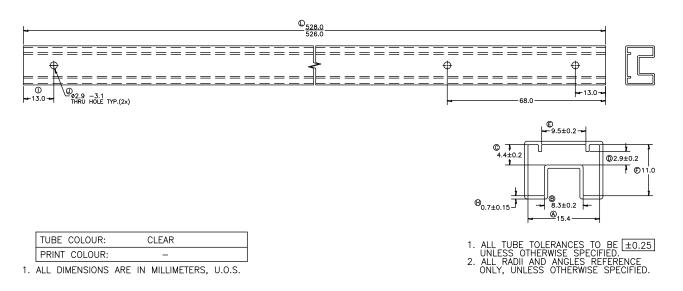



Fig. 23 - Tape and Reel Packing Option 7 (750 parts per reel)

PACKING INFORMATION (Tubes)

DEVICE PER TUBE						
ТҮРЕ	UNITS/TUBE	TUBE/BOX	UNITS/BOX			
DIP-8, widebody	40	30	1200			

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.