

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

P-Channel Enhancement-Mode Vertical DMOS FETs

Features

- ▶ Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Low C_{iss} and fast switching speeds
- Excellent thermal stability
- Integral source-drain diode
- High input impedance and high gain

Applications

- Motor controls
- Converters
- Amplifiers
- Switches
- Power supply circuits
- Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.)

General Description

This enhancement-mode (normally-off) transistor utilizes a vertical DMOS structure and Supertex's well-proven, silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Part Number	Package Option	Packing	
VP0104N3-G	TO-92	1000/Bag	
VP0104N3-G P002			
VP0104N3-G P003			
VP0104N3-G P005	TO-92	2000/Reel	
VP0104N3-G P013			
VP0104N3-G P014			

⁻G denotes a lead (Pb)-free / RoHS compliant package.

Contact factory for Wafer / Die availablity.

Devices in Wafer / Die form are lead (Pb)-free / RoHS compliant.

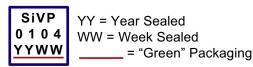
Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV _{DSS}
Drain-to-gate voltage	BV _{DGS}
Gate-to-source voltage	±20V
Operating and storage temperature	-55°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Resistance

7 1	
Package	$oldsymbol{ heta}_{ja}$
TO-92	132°C/W


Product Summary

BV _{DSS} /BV _{DGS}	R _{DS(ON)} (max)	l _{D(ON)} (min)		
-40V	8.0Ω	-500mA		

Pin Configuration

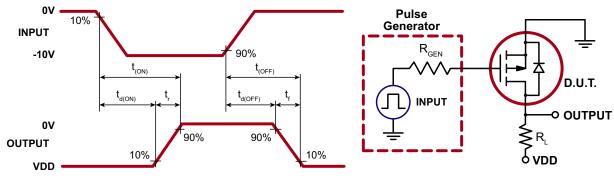
Product Marking

Package may or may not include the following marks: Si or \$\mathbb{H}\$

Thermal Characteristics

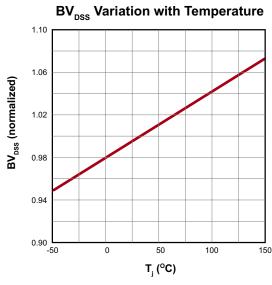
Package	l _D (continuous) [†]	I _D (pulsed)	Power Dissipation @T _c = 25°C	l _{DR} †	I _{DRM}
TO-92	-250mA	-800mA	1.0W	-250mA	-800A

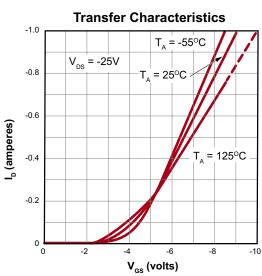
Notes:

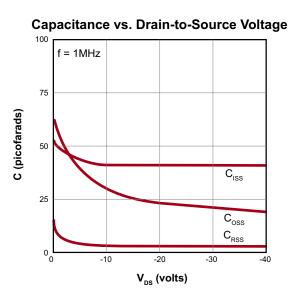

Electrical Characteristics (T_A = 25°C unless otherwise specified)

Sym	Parameter	Min	Тур	Max	Units	Conditions	
BV _{DSS}	Drain-to-source breakdown voltage	-40	-	-	V	$V_{GS} = 0V, I_{D} = -1.0 \text{mA}$	
$V_{\rm GS(th)}$	Gate threshold voltage	-1.5	-	-3.5	V	$V_{GS} = V_{DS}$, $I_{D} = -1.0$ mA	
$\Delta V_{GS(th)}$	Change in V _{GS(th)} with temperature	-	5.8	6.5	mV/°C	$V_{GS} = V_{DS}$, $I_{D} = -1.0$ mA	
I _{GSS}	Gate body leakage current	-	-1.0	-100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
		-	-	-10	μA	$V_{GS} = 0V, V_{DS} = Max Rating$	
I _{DSS}	Zero gate voltage drain current	-	-	-1.0	mA	$V_{DS} = 0.8$ Max Rating, $V_{GS} = 0V$, $T_{A} = 125^{\circ}C$	
	On-state drain current	-0.15	-0.25	-	Α	$V_{GS} = -5.0V, V_{DS} = -25V$	
D(ON)	On-state drain current	-0.5	-1.2	-		$V_{GS} = -10V, V_{DS} = -25V$	
В	Static drain-to-source	-	11	15	0	$V_{GS} = -5.0V, I_{D} = -100mA$	
R _{DS(ON)}	on-state resistance	-	6.0	8.0	Ω	V _{GS} = -10V, I _D = -500mA	
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with temperature	-	0.55	1.0	%/°C	V _{GS} = -10V, I _D = -500mA	
G _{FS}	Forward transconductance	150	190	-	mmho	$V_{DS} = -25V, I_{D} = -500 \text{mA}$	
C _{ISS}	Input capacitance	-	45	60		V _{GS} = 0V,	
C _{oss}	Common source output capacitance	-	22	30	pF	$V_{DS} = -25V,$	
C _{RSS}	Reverse transfer capacitance	-	3.0	8.0		f = 1.0MHz	
t _{d(ON)}	Turn-on delay time	-	4.0	6.0			
t _r	Rise time	-	3.0	10	no	$V_{DD} = -25V,$	
t _{d(OFF)}	Turn-off delay time	-	8.0	12	ns	$I_D = -500 \text{mA},$ $R_{GEN} = 25 \Omega$	
t _f	Fall time	-	4.0	10		GEN	
V _{SD}	Diode forward voltage drop	-	-1.2	-2.0	V	$V_{GS} = 0V, I_{SD} = -1.0A$	
t _{rr}	Reverse recovery time	-	400	-	ns	V _{GS} = 0V, I _{SD} = -1.0A	

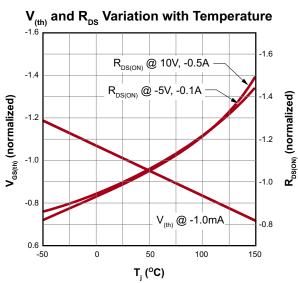
Notes:

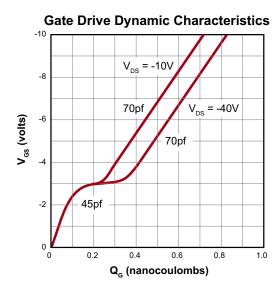

- 1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)
- 2. All A.C. parameters sample tested.

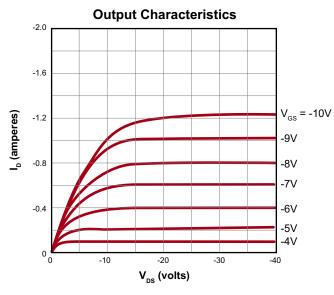

Switching Waveforms and Test Circuit

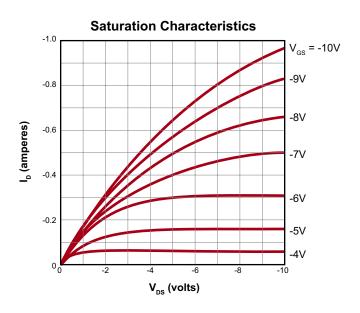


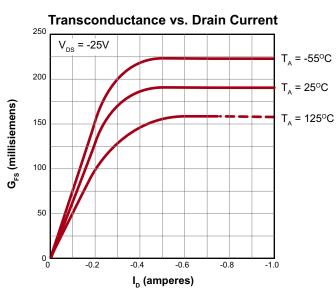

[†] I_D (continuous) is limited by max rated T_i .

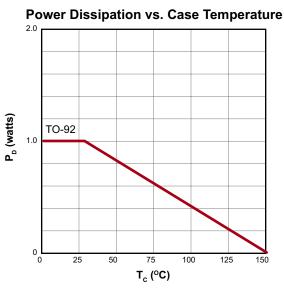

Typical Performance Curves

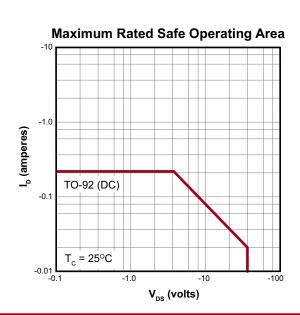


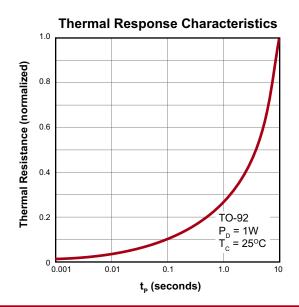


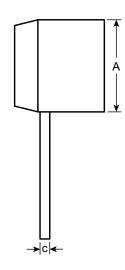


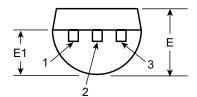





Typical Performance Curves (cont.)






3-Lead TO-92 Package Outline (N3)

Front View

Side View

Bottom View

Symb	ool	Α	b	С	D	E	E1	е	e1	L
	MIN	.170	.014 [†]	.014 [†]	.175	.125	.080	.095	.045	.500
Dimensions (inches)	NOM	-	-	-	-	-	-	-	-	-
	MAX	.210	.022†	.022†	.205	.165	.105	.105	.055	.610*

JEDEC Registration TO-92.

Drawings not to scale.

Supertex Doc.#: DSPD-3TO92N3, Version E041009.

(The package drawing (s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

^{*} This dimension is not specified in the JEDEC drawing.

[†] This dimension differs from the JEDEC drawing.