

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

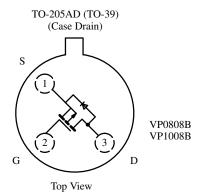
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

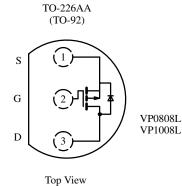
P-Channel Enhancement-Mode MOSFET Transistors

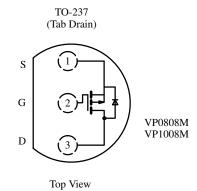
Product Summary

Part Number	V _{(BR)DSS} Min (V)	$r_{DS(on)} Max(\Omega)$	V _{GS(th)} (V)	I _D (A)
VP0808B		$5 @ V_{GS} = -10 V$	−2 to −4.5	-0.88
VP0808L	-80	$5 @ V_{GS} = -10 V$	−2 to −4.5	-0.28
VP0808M		$5 @ V_{GS} = -10 V$	−2 to −4.5	-0.31
VP1008B		$5 @ V_{GS} = -10 V$	−2 to −4.5	-0.79
VP1008L	-100	$5 @ V_{GS} = -10 V$	−2 to −4.5	-0.28
VP1008M		$5 @ V_{GS} = -10 V$	−2 to −4.5	-0.31

Features


- High-Side Switching
 Low On-Resistance: 2.5 Ω
 Moderate Threshold: -3.4 V
- Fast Switching Speed: 40 nsLow Input Capacitance: 75 pF


Benefits


- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Switching
- Easily Driven Without Buffer

Applications

- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Power Supply, Converter Circuits
- Motor Control

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless Otherwise Noted)

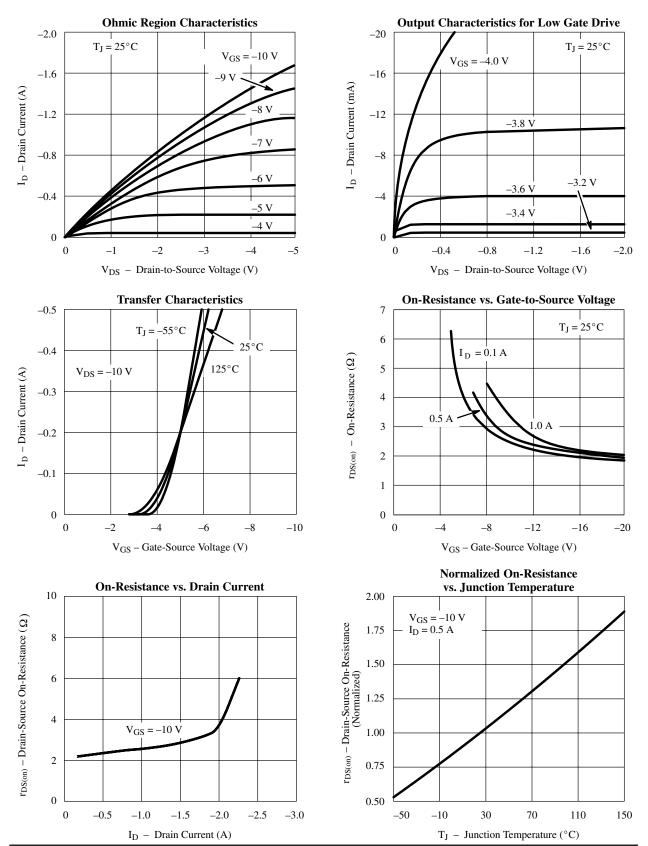
Parameter		Symbol	VP0808B ^b	VP0808L	VP0808M	VP1008B ^b	VP1008L	VP1008M	Unit
Drain-Source Voltage		V_{DS}	-80	-80	-80	-100	-100	-100	v
Gate-Source Voltage		V_{GS}	±20	±30	±30	±20	±30	±30	1 '
Continuous Drain Current $(T_J = 150^{\circ}C)$	$T_A = 25$ °C	ī	-0.88	-0.28	-0.31	-0.79	-0.28	-0.31	
	$T_{A} = 100^{\circ} C$	I_D	-0.53	-0.17	-0.20	-0.53	-0.17	-0.20	Α
Pulsed Drain Current ^a		I_{DM}	-3	-3	-3	-3	-3	-3	
Power Dissipation	$T_A = 25$ °C	P _D	6.25	0.8	1	6.25	0.8	1	w
	$T_{A} = 100^{\circ} C$		2.5	0.32	0.4	2.5	0.32	0.4	"
Maximum Junction-to-Ambient		R_{thJA}		156	125		156	125	°C/W
Maximum Junction-to-Case		R_{thJC}	20			20			C/W
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150					°C	

Notes

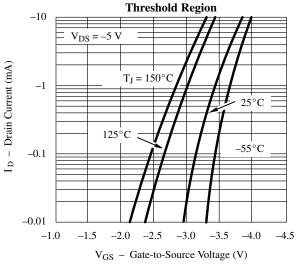
- a. Pulse width limited by maximum junction temperature.
- b. Reference case for all temperature testing.

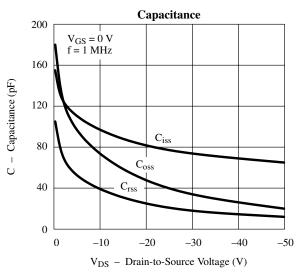
Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70218.

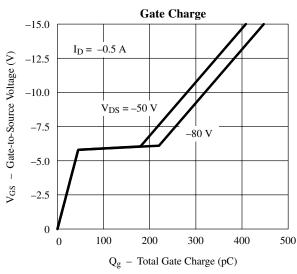
Specifications^a

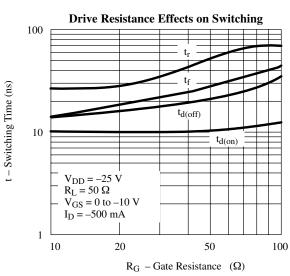

			Турь	Limits					
	Symbol			VP0808B/L/M		VP1008B/L/M		1	
Parameter		Test Conditions		Min	Max	Min	Max	Unit	
Static			•		•				
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -10 \mu\text{A}$		-80		-100			
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -1 \text{ mA}$	-3.4	-2	-4.5	-2	-4.5	V	
Gate-Body Leakage	Loss	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100		±100	† \	
Сане-вопу Leakage	I_{GSS}	$T_{\rm J} = 125^{\circ}{ m C}$			±500		±500	nA	
Zero Gate Voltage Drain Current	I _{DSS} -	$V_{DS} = -80 \text{ V}, V_{GS} = 0 \text{ V}$			-10				
		$T_{\rm J} = 125^{\circ}{ m C}$			-500			μΑ	
		$V_{DS} = -100 \text{ V}, V_{GS} = 0 \text{ V}$					-10	μί	
		$T_J = 125^{\circ}C$					-500		
On-State Drain Current ^c	I _{D(on)}	$V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}$	-2	-1.1		-1.1		A	
Drain-Source On-Resistance ^c	r _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -1 \text{ A}$	2.5		5		5	Ω	
Diam Source on Resistance		$T_{\rm J} = 125^{\circ}{ m C}$	4.4		8		8		
Forward Transconductance ^c	gfs	$V_{DS} = -10 \text{ V}, I_D = -0.5 \text{ A}$	325	200		200]	
Common Source Output Conductance ^c	gos	$V_{DS} = -7.5 \text{ V}, I_D = -0.1 \text{ A}$						mS	
Dynamic									
Input Capacitance	C _{iss}		75		150		150	pF	
Output Capacitance	C _{oss}	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz	40		60		60		
Reverse Transfer Capacitance	C_{rss}		18		25		25		
Switching ^d									
Turn On Time	t _{d(on)}		11		15		15		
Turn-On Time	t _r	$V_{\rm DD} = -25 \text{ V}, R_{\rm L} = 47 \Omega$ $I_{\rm D} \cong -0.5 \text{A}, V_{\rm GEN} = -10 \text{V}$	30		40		40	ns	
Turn-Off Time	t _{d(off)}	$R_G = 25 \Omega$	20		30		30		
I WILL OIL THINK	t_{f}		20		30		30		

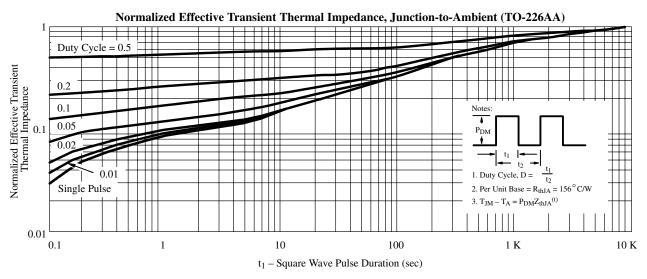
a. $T_A = 25^{\circ}\text{C}$ unless otherwise noted. b. For DESIGN AID ONLY, not subject to production testing. c. Pulse test: $PW \le 300 \, \mu\text{s}$ duty cycle $\le 2\%$.


d. Switching time is essentially independent of operating temperature.


VPDV10


Typical Characteristics (25°C Unless Otherwise Noted)




Typical Characteristics (25°C Unless Otherwise Noted)

4 Siliconix