

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

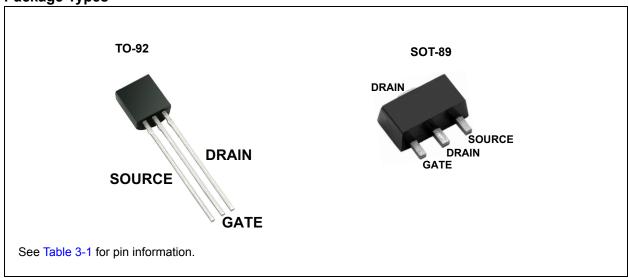
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

P-Channel Enhancement-Mode Vertical DMOS FET

Features

- · Free from Secondary Breakdown
- · Low Power Drive Requirement
- · Ease of Paralleling
- Low C_{ISS} and Fast Switching Speeds
- · High Input Impedance and High Gain
- · Excellent Thermal Stability
- · Integral Source-drain Diode

Applications


- · Motor Controls
- · Converters
- · Amplifiers
- Switches
- · Power Supply Circuits
- Drivers: Relays, Hammers, Solenoids, Lamps, Memory, Displays, Bipolar Transistors, etc.

General Description

The VP2450 is a low-threshold, Enhancement-mode (normally-off) transistor that utilizes a vertical Double-diffused Metal-Oxide Semiconductor (DMOS) structure and a well-proven silicon gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally induced secondary breakdown.

This Vertical DMOS Field-Effect Transistor (FET) is ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Drain-to-source Voltage	BV _{DSS}
Drain-to-gate Voltage	BV _{DGS}
Gate-to-source Voltage	
Operating and Storage Temperatures	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications : For all specifications, $T_A = T_J = +25^{\circ}C$ unless otherwise noted.									
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
DC PARAMETER (Note 1 unless other	rwise state	ed)							
Drain-to-source Breakdown Voltage	BV _{DSS}	-500	_	_	V	$V_{GS} = 0V, I_D = -250 \mu A$			
Gate Threshold Voltage	V _{GS(th)}	-1.5	_	-3.5	V	$V_{GS} = V_{DS}$, $I_D = -1$ mA			
Change in V _{GS(th)} with Temperature	$\Delta V_{GS(th)}$	_	_	-4.8	mV/°C	$V_{GS} = V_{DS}, I_{D} = -1 \text{ mA (Note 2)}$			
Gate Body Leakage Current	I _{GSS}			-100	nA	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			
		_		-10	μΑ	V_{GS} = 0V, V_{DS} = Maximum Rating			
Zero Gate Voltage Drain Current	I _{DSS}			-1	mA	V_{DS} = 0.8 Maximum Rating, V_{GS} = 0V, T_A = 125°C (Note 2)			
On state Proin Current		– 75	_	_	m 1	$V_{GS} = -4.5V, V_{DS} = -15V$			
On-state Drain Current	I _{D(ON)}	-200		_	mA	V _{GS} = -10V, V _{DS} = -15V			
Static Drain-to-source On-state	В	_	_	35	Ω	$V_{GS} = -4.5V$, $I_D = -50$ mA			
Resistance	R _{DS(ON)}	_	_	30	12	$V_{GS} = -10V, I_D = -100 \text{ mA}$			
Change in R _{DS(ON)} with Temperature	$\Delta R_{DS(ON)}$	_	_	0.75	%/°C	V _{GS} = -10V, I _D = -100 mA (Note 2)			
AC PARAMETER (Note 2)									
Forward Transconductance	G _{FS}	150	320	_	mmho	$V_{DS} = -15V$, $I_{D} = -100$ mA			
Input Capacitance	C _{ISS}			190					
Common Source Output Capacitance	C _{OSS}	-		75	pF	$V_{GS} = 0V, V_{DS} = -25V, f = 1 MHz$			
Reverse Transfer Capacitance	C _{RSS}	-	1	20					
Turn-on Delay Time	t _{d(ON)}	_	_	10					
Rise Time	t _r	_		25	ns	$V_{DD} = -25V$, $I_{D} = -200$ mA,			
Turn-off Delay Time	t _{d(OFF)}	_	_	45	113	$R_{GEN} = 25\Omega$			
Fall Time	t _f	_	_	25					
DIODE PARAMETER									
Diode Forward Voltage Drop	V_{SD}	_	_	-1.8	V	V _{GS} = 0V, I _{SD} = -100 mA (Note 1)			
Reverse Recovery Time	t _{rr}	_	300	_	ns	V _{GS} = 0V, I _{SD} = -100 mA (Note 2)			

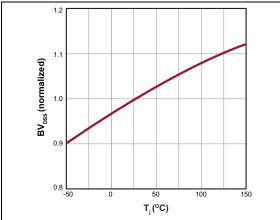
Note 1: All DC parameters are 100% tested at 25°C unless otherwise stated. (Pulse test: 300 µs pulse, 2% duty cycle)

^{2:} Specification is obtained by characterization and is not 100% tested.

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise noted, for all specifications $T_A = T_J = +25$ °C.									
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
TEMPERATURE RANGE									
Operating Temperature	T _A	-55	_	+150	°C				
Storage Temperature	T _S	-55	_	+150	°C				
PACKAGE THERMAL RESISTANCE									
TO-92	$\theta_{\sf JA}$	_	132	_	°C/W				
SOT-89	$\theta_{\sf JA}$	_	133	_	°C/W				

THERMAL CHARACTERISTICS


Package	I _D (Note 1) (Continuous) (mA)	I _D (Pulsed) (mA)	Power Dissipation at T _A = 25°C (W)	I _{DR} (Note 1) (mA)	I _{DRM} (mA)
TO-92	-100	-300	0.74	-100	-300
SOT-89	-160	-800	1.6 (Note 2)	-160	-800

Note 1: I_D (continuous) is limited by maximum T_J.

^{2:} Mounted on FR5 board, 25 mm x 25 mm X 1.57 mm

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: BV_{DSS} Variation with Temperature.

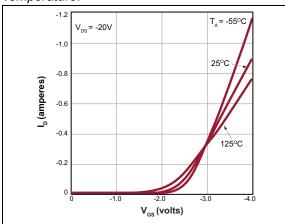


FIGURE 2-2: Transfer Characteristics.

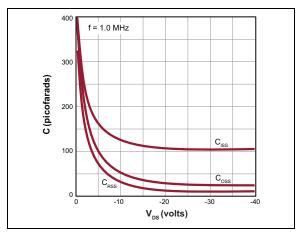
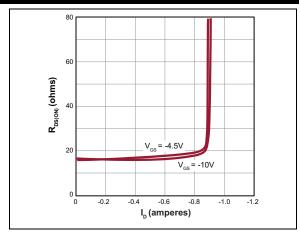
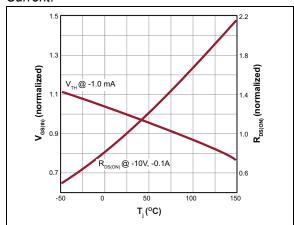




FIGURE 2-3: Capacitance vs. Drain-to-source Voltage.

FIGURE 2-4: On-resistance vs. Drain Current.

FIGURE 2-5: $V_{GS(th)}$ and $R_{DS(ON)}$ Variation with Temperature.

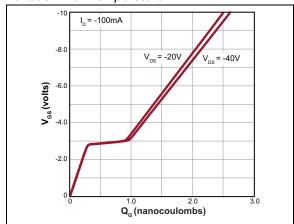


FIGURE 2-6: Gate Drive Dynamic Characteristics.

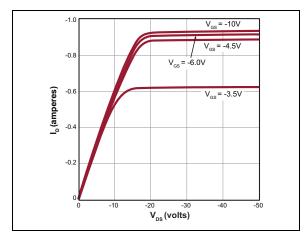


FIGURE 2-7: Output Characteristics.

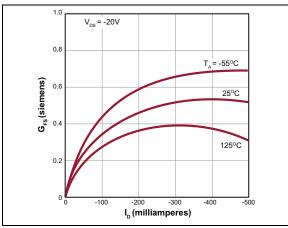
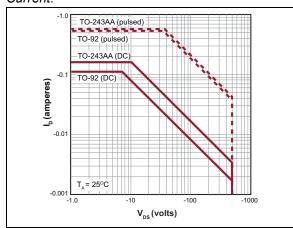



FIGURE 2-8: Transconductance vs. Drain Current.

FIGURE 2-9: Maximum Rated Safe Operating Area.

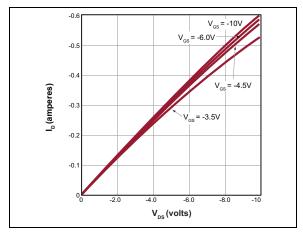
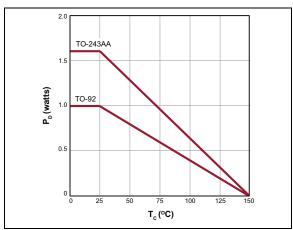



FIGURE 2-10: Saturation Characteristics.

FIGURE 2-11: Power Dissipation vs. Case Temperature.

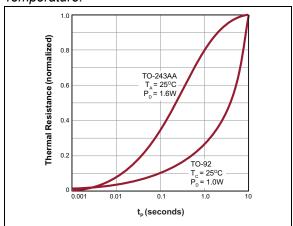


FIGURE 2-12: Thermal Response Characteristics.

3.0 PIN DESCRIPTION

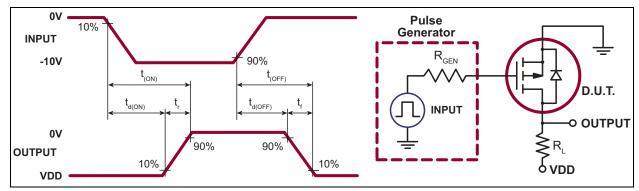
The details on the pins of VP2450 (TO-92 and SOT-89) are listed on Table 3-1. Refer to **Package Types** for the location of pins.

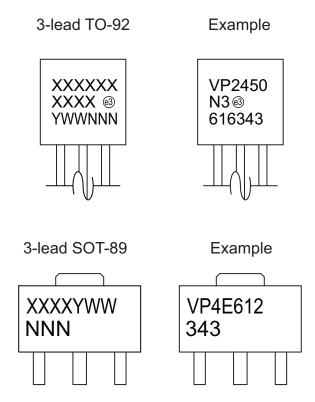
TABLE 3-1: PIN FUNCTION TABLE

TO-92 Pin Number	SOT-89 Pin Number	Pin Name	Description
1	3	Source	Source
2	1	Gate	Gate
3	2,4	Drain	Drain

4.0 FUNCTIONAL DESCRIPTION

Figure 4-1 illustrates the switching waveforms and test circuit for VP2450.




FIGURE 4-1: Switching Waveforms and Test Circuit.

PRODUCT SUMMARY

BV _{DSS} /BV _{DGS} (V)	R _{DS(ON)} (Maximum) (Ω)	I _{D(ON)} (Minimum) (mA)	V _{GS(th)} (Maximum) (V)
-500	30	-200	-0.4

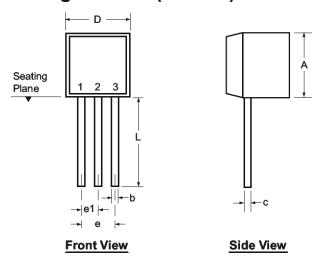
5.0 PACKAGING INFORMATION

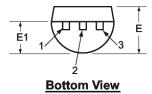
5.1 Package Marking Information

Legend: XX...X Product Code or Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)

YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

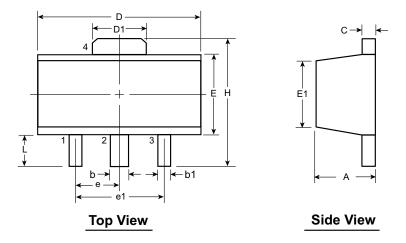

e3 Pb-free JEDEC® designator for Matte Tin (Sn)


This package is Pb-free. The Pb-free JEDEC designator (e3)

can be found on the outer packaging for this package.

lote: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

3-Lead TO-92 Package Outline (L/LL/N3)


Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Symb	ool	А	b	С	D	E	E1	е	e1	L
	MIN	.170	.014 [†]	.014 [†]	.175	.125	.080	.095	.045	.500
Dimensions (inches)	NOM	-	-	-	-	-	-	-	-	-
(51100)	MAX	.210	.022†	.022†	.205	.165	.105	.105	.055	.610*

JEDEC Registration TO-92.
* This dimension is not specified in the JEDEC drawing.

[†] This dimension differs from the JEDEC drawing. **Drawings not to scale.**

3-Lead TO-243AA (SOT-89) Package Outline (N8)

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Symbo	ol	Α	b	b1	С	D	D1	Е	E1	е	e1	Н	L
	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	2.00 [†]			3.94	0.73 [†]
Dimensions (mm)	NOM	-	-	-	-			1.50 BSC	3.00 BSC	-	-		
()	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29	ВЗС		4.25	1.20

JEDEC Registration TO-243, Variation AA, Issue C, July 1986. † This dimension differs from the JEDEC drawing Drawings not to scale.

APPENDIX A: REVISION HISTORY

Revision A (September 2016)

- Converted Supertex Doc# DSFP-VP2450 to Microchip DS20005569A.
- Changed the "TO-243AA (SOT-89)" package to "SOT-89."
- Limited package options to TO-92 (1000/Bag) and SOT-89 (2000/Reel).
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO	<u> </u>	. x . x	Examples:	
Device	Package Options	ြ Environmental Media Type	a) VP2450N3-G:	P-Channel Enhancement-Mode Vertical DMOS FET, 3-lead TO-92 Package, 1000/Bag
Device:	VP2450 =	P-Channel Enhancement-Mode Vertical DMOS FET	b) VP2450N8-G:	P-Channel Enhancement-Mode Vertical DMOS FET, 3-lead SOT-89 Package, 2000/Reel
Packages:	N3 = N8 =	3-lead TO-92 3-lead SOT-89		
Environmental:	G =	Lead (Pb)-free/RoHS-compliant Package		
Media Type:	(Blank) =	1000/Bag for an N3 Package 2000/Reel for an N8 Package		

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0991-5

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2829
China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw

Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16