

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DDR4 (PC4) ECC RDIMM VP9MRxx72x4xxx

Viking's DDR4 RDIMM memory module offers lower operating voltages, higher module densities and faster speed categories than prior generation DDR3 memory. JEDEC DDR4 (JESD79-4) specification provides higher performance with improved reliability and reduced power, thereby representing a significant achievement relative to previous DRAM memory technologies.

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 1 of 46

REVISION HISTORY

Revision	Release Date	Description of Change	Checked By (Full Name)
X1	9/9/14	Preliminary	IDC (9-9-14)
X2	2/3/15	Revise thickness to JEDEC spec. Add Idd values	IDC (9-11-14)
Α	4/2/15	Initial release	IDC (3-16-15)
В	5/28/15	Update Block diagram, IDD values, IDC review update	IDC (5-28-15)
С	9/22/15	Update Single Rank Block diagram using 18 DRAM's and Dual Rank Block diagram using 36 DRAM's	IDC (9-16-15)
D	5/12/16	Add 4Gb based PN's to module config and Idd values table per Samsung datasheet	IDC (5-16-16)
E	3/16/17	Add VP9MR4G7224JBK. Change logo and format. Add 2666 speed bin and timing	
F	5/2/17	Add 2666 PN's and speed bin and timing	
G	7/11/17	Add VP9MR8G7224JLLSB	
Н	8/2/17	change PN from xxxSB to xxxyz	

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 2 of 46

Legal Information

Legal Information

Copyright© 2017 Sanmina Corporation. All rights reserved. The information in this document is proprietary and confidential to Sanmina Corporation. No part of this document may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from Sanmina. Sanmina reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of Sanmina to provide notification of such revision or change.

Sanmina provides this documentation without warranty, term or condition of any kind, either expressed or implied, including, but not limited to, expressed and implied warranties of merchantability, fitness for a particular purpose, and non-infringement. While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made. In no event will Sanmina be liable for damages arising directly or indirectly from any use of or reliance upon the information contained in this document. Sanmina may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time.

Sanmina, Viking Technology, Viking Modular Solutions, and the Viking logo are trademarks of Sanmina Corporation. Other company, product or service names mentioned herein may be trademarks or service marks of their respective owners.

STATEMENT OF COMPLIANCE

Viking Technology, Sanmina Corporation ("Viking") shall use commercially reasonable efforts to provide components, parts, materials, products and processes to Customer that do not contain: (i) lead, mercury, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE) above 0.1% by weight in homogeneous material or (ii) cadmium above 0.01% by weight of homogeneous material, except as provided in any exemption(s) from RoHS requirements (including the most current version of the "Annex" to Directive 2002/95/EC of 27 January, 2003), as codified in the specific laws of the EU member countries. Viking strives to obtain appropriate contractual protections from its suppliers in connection with the RoHS Directives.

All printed circuit boards (PCBs) have a flammability rating of UL94V-0.

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 3 of 46

Ordering Information and Module Configuration

Viking Part Number	Voltage	Capacity	Module Configuration	Device Configuration	Device Package	DIMM Rank	Speed	CAS Latency
VP9MR1G7224HBHyz	1.2V	8GB	1Gx72	1024Mx4 (18)	4Gb FBGA	1	PC4-17000	CL15 (15-15-15)
VP9MR1G7224HBJyz	1.2V	8GB	1Gx72	1024Mx4 (18)	4Gb FBGA	1	PC4-19200	CL17 (17-17-17)
VP9MR1G7224HBKyz	1.2V	8GB	1Gx72	1024Mx4 (18)	4Gb FBGA	1	PC4-21300	CL19 (19-19-19)
VP9MR2G7224HBHyz	1.2V	16GB	2Gx72	1024Mx4 (36)	4Gb FBGA	2	PC4-17000	CL15 (15-15-15)
VP9MR2G7224HBJyz	1.2V	16GB	2Gx72	1024Mx4 (36)	4Gb FBGA	2	PC4-19200	CL17 (17-17-17)
VP9MR2G7224HBKyz	1.2V	16GB	2Gx72	1024Mx4 (36)	4Gb FBGA	2	PC4-21300	CL19 (19-19-19)
VP9MR2G7224JBHyz	1.2V	16GB	2Gx72	2048Mx4 (18)	8Gb FBGA	1	PC4-17000	CL15 (15-15-15)
VP9MR2G7224JBJyz	1.2V	16GB	2Gx72	2048Mx4 (18)	8Gb FBGA	1	PC4-19200	CL17 (17-17-17)
VP9MR2G7224JBKyz	1.2V	16GB	2Gx72	2048Mx4 (18)	8Gb FBGA	1	PC4-21300	CL19 (19-19-19)
VP9MR4G7224JBHyz	1.2V	32GB	4Gx72	2048Mx4 (36)	8Gb FBGA	2	PC4-17000	CL15 (15-15-15)
VP9MR4G7224JBJyz	1.2V	32GB	4Gx72	2048Mx4 (36)	8Gb FBGA	2	PC4-19000	CL17 (17-17-17)
VP9MR4G7224JBKyz	1.2V	32GB	4Gx72	2048Mx4 (36)	8Gb FBGA	2	PC4-21300	CL19 (19-19-19)
VP9MR8G7224JLLyz	1.2V	64GB	8Gx72	(4Gx4)x36	2H TSV	2	PC4-21300	CL19 (19-19-19)

Notes:

• The lowercase letters y and z are wildcard characters that indicate DRAM vendor and die revisions and /or for customer specific locked BOMs. Refer to the Viking part number coversheet for details.

Contact Viking for availability date

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 4 of 46

Features

- JEDEC Standard Power Supply
 - \circ PC4: VDD = VDDQ = 1.2V±5% (1.14V-1.26V)
 - o External VPP = 2.5 Volt +10%, -5%
 - o VDDSPD = 2.5V± 10% (2.25-2.75V)
- 288 pin Dual-In-Line Memory Module
- · Edge finger connector ramp zone to reduce insertion force
- Point-to-Point topology to reduce loading
- Pseudo-open drain (POD12) DQ lines
- Write DQ CRC (Cyclic Redundancy Check)
- Internally generated VrefDQ
- ECC recovery from command and parity errors
- On-chip CA Parity detection for the command/address bus
- Programmable CAS Latency: 11,12,13,14,15,17
- Programmable CAS Write Latency (CWL).
- Programmable Additive Latency (Posted CAS)
- Per DRAM addressability is supported
- One load for address/command signals using a Registered Clock Driver (RCD)

- Selectable Fixed burst chop (BC4) of 4 and burst length (BL8) of 8 on-the-fly (OTF) via the mode register set (MRS)
- 8n prefetch with 2 or 4 selectable bank groups: 16 banks (4 bank groups x 4 banks per bank group)
- Separate activation, read, write, refresh operations for each bank group
- 7 mode registers
- Dynamic On-Die-Termination (ODT) and ODT Park for improved signal integrity.
- · Self Refresh and several Power Down Modes
- DLL-off mode for power savings
- ZQ pin Self Calibration for output driver and ODT
- System Level Timing Calibration Support via Write Leveling and Multi Purpose Register (MPR) Read Pattern
- Serial Presence Detect with EEPROM
- On-DIMM Thermal Sensor
- Asynchronous Reset
- Bidirectional Differentially Buffered Data Strobes(DQS)
- RDIMM dimensions within JEDEC MO-309 maximum limits
- RoHS Compliant

DDR4 SPEED BIN Nomenclature

Module Standard	SDRAM Standard	Clock
PC4-17000	DDR4-2133	1066 MHz
PC4-19200 ¹	DDR4-2400	1200 MHz
PC4-21300 ¹	DDR4-2667	1333 MHz
PC4-25600 ¹	DDR4-3200	1600 MHz

Notes:

1. Contact Viking for availability date

DDR4 Timing Summary

MT/s	tCK (ns)	CAS Latency (tCK)	tRCD (ns)	tRP (ns)	tRAS (ns)	tRC (ns)	CL-tRCD- tRP
DDR4-1866	1.071	13	13.92	13.92	34	47.92	13-13-13
DDR4-2133	0.93	15	14.06	14.06	33	47.05	15-15-15
DDR4-2400	0.83	17	14.16	14.16	32	46.16	17-17-17
DDR4-2666	0.75	22	14.25	14.25	32	46.25	19-19-19

Notes:

• CL = CAS Latency, tRCD = Activate -to-Command Time, tRP = Precharge Time. Refer to Speed Bin tables for details

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 5 of 46

Addressing

Addressing					
		16GB(1Rx4) 2048Mbx4 DRAM	32GB(2Rx4) 2048Mbx4 DRAM		
	# of Bank Groups	4	4		
Bank Address	BG Address	BG0~BG1	BG0~BG1		
	Bank Address in a BG	BA0~BA1	BA0~BA1		
Row Address		128K:A0~A16	128K:A0~A16		
Column Address		A0~ A9	A0~ A9		
Page size		512B	512B		

- Micron datasheet specified 512B / 1KB as page size with "Die revision dependant".
- In Hynix and Samsung Datasheet specifies 512B for x4 Device.

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 6 of 46

DDR4 288-pin RDIMM Pin Wiring Assignments/Configurations

	DDR4 288-pin RDIMM Pin Wiring Assignments/Configurations										
Pin#	Description	Pin#	Description	Pin#	Description	Pin#	Description	Pin#	Description	Pin#	Description
1	12V NC	145	12V NC	52	DQS17_c	196	DQS8_c	102	DQ38	246	VSS
2	VSS	146	VREFCA	53	VSS	197	DQS8_t	103	VSS	247	DQ39
3	DQ4	147	VSS	54	CB6	198	VSS	104	DQ34	248	VSS
4	VSS	148	DQ5	55	VSS	199	CB7	105	VSS	249	DQ35
5	DQ0	149	VSS	56	CB2	200	VSS	106	DQ44	250	VSS
6	VSS	150	DQ1	57	VSS	201	CB3	107	VSS	251	DQ45
7	DQS9 t	151	VSS	58	RESET_n	202	VSS	108	DQ40	252	VSS
8	DQS9 c	152	DQS0 c	59	VDD	203	CKE1	109	VSS	253	DQ41
9	VSS	153	DQS0_t	60	CKE0	204	VDD	110	DQS14_t	254	VSS
10	DQ6	154	VSS	61	VDD	205	RFU	111	DQS14_c	255	DQS5_c
11	VSS	155	DQ7	62	ACT_n	206	VDD	112	VSS	256	DQS5_t
12	DQ2	156	VSS	63	BG0	207	BG1	113	DQ46	257	VSS
13	VSS	157	DQ3	64	VDD	208	ALERT n	114	VSS	258	DQ47
14	DQ12	158	VSS	65	A12/BC_n	209	VDD	115	DQ42	259	VSS
15	VSS	159	DQ13	66	A9	210	A11	116	VSS	260	DQ43
16	DQ8	160	VSS	67	VDD	211	A7	117	DQ52	261	VSS
17	VSS	161	DQ9	68	A8	212	VDD	118	VSS	262	DQ53
18	DQS10_t	162	VSS	69	A6	213	A5	119	DQ48	263	VSS
19	DQS10_c	163	DQS1_c	70	VDD	214	A4	120	VSS	264	DQ49
20	VSS	164	DQS1 t	71	A3	215	VDD	121	DQS15 t	265	VSS
21	DQ14	165	VSS	72	A1	216	A2	122	DQS15_c	266	DQS6_c
22	VSS	166	DQ15	73	VDD	217	VDD	123	VSS	267	DQS6_t
23	DQ10	167	VSS	74	CK0 t	218	CK1 t	124	DQ54	268	VSS
24	VSS	168	DQ11	75	CK0_c	219	CK1_c	125	VSS	269	DQ55
25	DQ20	169	VSS	76	VDD	220	VDD	126	DQ50	270	VSS
26	VSS	170	DQ21	77	VTT	221	VTT	127	VSS	271	DQ51
27	DQ16	171	VSS	78	EVENT_n	222	PARITY	128	DQ60	272	VSS
28	VSS	172	DQ17	79	A0	223	VDD	129	VSS	273	DQ61
29	DQS11 t	173	VSS	80	VDD	224	BA1	130	DQ56	274	VSS
30	DQS11_c	174	DQS2_c	81	BA0	225	A10/AP	131	VSS	275	DQ57
31	VSS	175	DQS2_t	82	RAS_n/A16	226	VDD	132	DQS16_t	276	VSS
32	DQ22	176	VSS	83	VDD	227	RFU	133	DQS16_c	277	DQS7_c
33	VSS	177	DQ23	84	S0_n	228	WE_n/A14	134	VSS	278	DQS7_t
34	DQ18	178	VSS	85	VDD	229	VDD	135	DQ62	279	VSS
35	VSS	179	DQ19	86	CAS_n/A15	230	NC	136	VSS	280	DQ63
36	DQ28	180	VSS	87	ODT0	231	VDD	137	DQ58	281	VSS

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 7 of 46

Pin#	Description										
37	VSS	181	DQ29	88	VDD	232	A13	138	VSS	282	DQ59
38	DQ24	182	VSS	89	S1_n	233	VDD	139	SA0	283	VSS
39	VSS	183	DQ25	90	VDD	234	A17 NC	140	SA1	284	VDDSPD
40	DQS12_t	184	VSS	91	ODT1	235	C[2] NC	141	SCL	285	SDA
41	DQS12_c	185	DQS3_c	92	VDD	236	VDD	142	VPP	286	VPP
42	VSS	186	DQS3_t	93	S2_n C[0]	237	S3_n C[1]	143	VPP	287	VPP
43	DQ30	187	VSS	94	VSS	238	SA2	144	RFU	288	VPP
44	VSS	188	DQ31	95	DQ36	239	VSS				
45	DQ26	189	VSS	96	VSS	240	DQ37				
46	VSS	190	DQ27	97	DQ32	241	VSS				
47	CB4	191	VSS	98	VSS	242	DQ33				
48	VSS	192	CB5 NC	99	DQS13_t	243	VSS				
49	CB0	193	VSS	100	DQS13_c	244	DQS4_c				
50	VSS	194	CB1	101	VSS	245	DQS4_t				
51	DQS17 t	195	VSS								

- Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n (ADR) for NVDIMMs.
- A15 needed for 4GBit DRAM, A16 needed for 8GBit DRAM, A17 needed for 16GBit DRAM
- DDR4 pin-out include the following additional pins beyond DDR3: Vpp, ACT_n, A17, BG0, BG1, Alert_n.
- The following DDR3 pins are no longer required for DDR4: BC#, BA2, VREFDQ
- Address A17 is only valid for 16GBit DRAM
- RAS_n is a multiplexed function with A16. (A16 needed for 8GBit DRAM)
- CAS_n is a multiplexed function with A15. (A15 needed for 4GBit DRAM)
- WE_n is a multiplexed function with A14

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 8 of 46

PIN FUNCTION DESCRIPTION

PIN NAME	DESCRIPTION	PIN NAME	DESCRIPTION
A0 - A17'	Register address input	SCL	I2C serial bus clock for SPD/TS and register
BA0, BA1	Register bank select input	SDA	I2C serial bus data line for SPD/TS and register
BG0, BG1	Register bank group select input	SA0-SA2	I2C slave address select for SPD/TS and register
RAS_n ²	Register row address strobe input	PAR	Register parity input
CAS_n ³	Register column address strobe input	VDD	SDRAM core power supply
WE_n ⁴	Register write enable input		
CS0_n, CS1_n, CS2_n, CS3_n	DIMM Rank Select Lines input		
CKE0, CKE1	Register clock enable lines input	VREFCA	SDRAM command/address reference supply
ODT0, ODT1	Register on-die termination control lines input	VSS	Power supply return (ground)
ACT_n	Register input for activate input	VDDSPD	Serial Presence Detect positive power supply
DQ0 - DQ63	DIMM memory data bus	ALERT_n	Register ALERT_n output
CB0 - CB7	DIMM ECC check bits	Vpp	DRAM Activation power supply
DQS9_t-DQS17_t	Data Buffer data strobes (positive line of differential pair)		
DQS9_c- DQS17_c	Data Buffer data strobes (negative line of differential pair)	RESET_n	Set Register and SDRAMs to a known state
_		EVENT_n	SPD signals a thermal event has occurred.
CK0_t, CK1_t	Register clock input (positive line of differential pair)	Vtt	SDRAM I/O termination supply
CK0_c, CK1_c	Register clocks input (negative line of differential pair)	RFU	Reserved for future use

- Address A17 is only valid for 16GBit DRAM
 RAS_n is a multiplexed function with A16. (A16 needed for 8GBit DRAM)
 CAS_n is a multiplexed function with A15. (A15 needed for 4GBit DRAM)
 WE_n is a multiplexed function with A14

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 9 of 46

Input/Output Functional Descriptions

SYMBOL	TYPE	FUNCTION
CK_t, CK_c	Input	Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
CKE0, (CKE1)	Input	Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.
CS0_n, (CS1_n)	Input	Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code.
C0, C1, C2	Input	Chip ID: Chip ID is only used for 3DS for 2,4,8high stack via TSV to select each slice of stacked component. Chip ID is considered part of the command code.
ODT0, (ODT1)	Input	On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
ACT_n	Input	Activation Command Input: ACT_n defines the Activation command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14.
RAS_n/A16, CAS_n/A15, WE_n/A14	Input	Command Inputs RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered. Those pins have multi function. For example, for activation with ACT_n Low, those are Addressing like A16,A15 and A14 but for non-activation command with ACT_n High, those are Command pins for Read, Write and other command defined in command truth table.
BG0 - BG1	Input	Bank Group Inputs: BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. x4 have BG0 and BG1.
BA0 - BA1	Input	Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS cycle.
A0 - A17	Input	Address Inputs: Provided the row address for ACTIVATE Commands and the column address for Read/Write commands th select one location out of the memory array in the respective bank. (A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions, see other rows. The address inputs also provide the op-code during Mode Register Set commands. A17 is only defined for the x4 configuration.

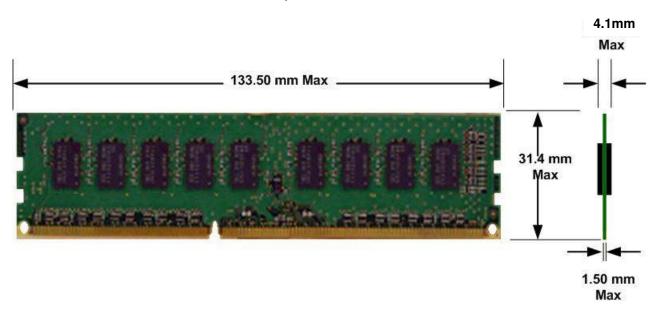
Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 10 of 46

SYMBOL	TYPE	FUNCTION
A10 / AP	Input	Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
A12 / BC_n	Input	Burst Chop: A12 / BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
RESET_n	Input	Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD.
DQ	Input / Output	Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of Data Burst. Any DQ from DQ0~DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4 A4=High. Refer to vendor specific datasheets to determine which DQ is used.
СВ	Input / Output	Check Bit Input/ Output: Bi-directional ECC portion of data bus for x72 configurations
DQS_t, DQS_c, DQSL_t, DQSL_c	Input / Output	Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. The data strobe DQS_t and DQSL_t, are paired with differential signals DQS_c and DQSL_c respectively, to provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended.
PAR	Input	Command and Address Parity Input: DDR4 Supports Even Parity check in DRAMs with MR setting. Once it's enabled via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-BA1, A17-A0. Input parity should maintain at the rising edge of the clock and at the same time with command & address with CS_n LOW.
ALERT_n	Output	Alert: It has multi functions such as CRC error flag, Command and Address Parity error flag. If there is error in CRC, then Alert_n goes LOW for the period time interval and goes back HIGH. IF there is error in Command Address Parity Check, then Alert_n goes LOW for relatively long period until on going DRAM internal recovery transaction to complete.
NC		No Connect: No internal electrical connection is present.
VDDQ	Supply	DQ Power Supply: 1.2 V +/- 0.06 V
VSSQ	Supply	DQ Ground
VDD	Supply	Power Supply: 1.2 V +/- 0.06 V
VSS	Supply	Ground
Vpp	Supply	DRAM Activation Power Supply: 2.5V (2.375V min , 2.75 max)
VREFCA	Supply	Reference voltage for CA

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 11 of 46

SYMBOL	TYPE	FUNCTION
ZQ	Supply	Reference Pin for ZQ calibration

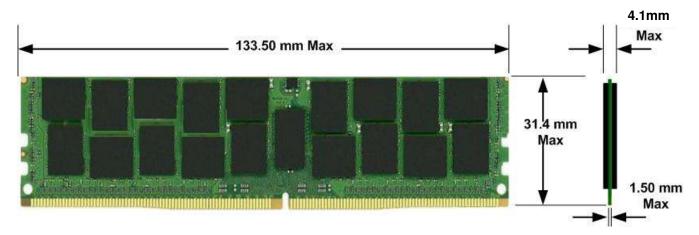
Notes:


1. The input only pins (BG0-BG-1, BA0-BA1, A0-A17, ACT_n, RAS_n,/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 12 of 46

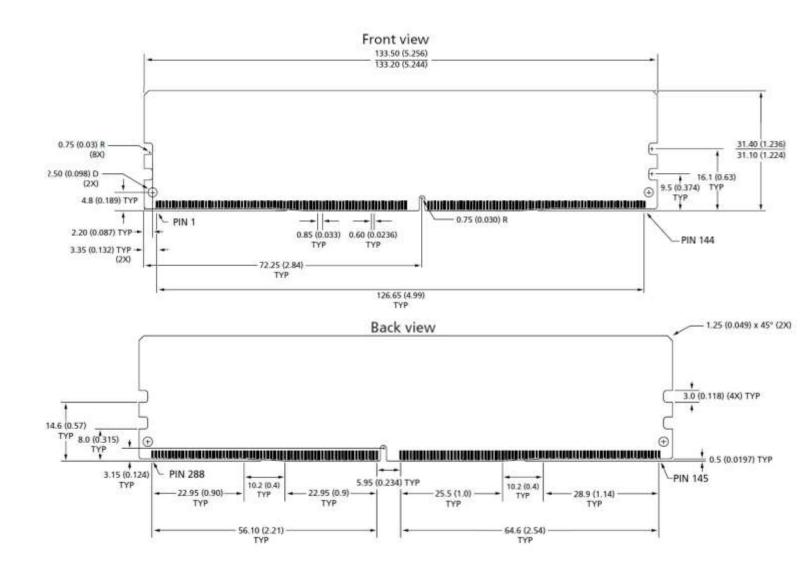
MECHANICAL OUTLINE

PHYSICAL LAYOUT, SINGLE RANK, 288 pin



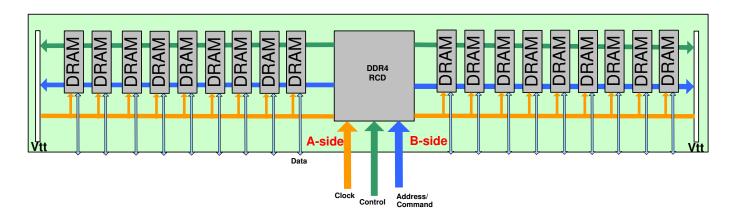
- All dimensions in mm
- Refer to JEDEC Standard Mechanical Outline MO-309 for other details
- DDR4 PCB is higher and thicker then DDR3 and the gold finger pins may have a ramp zone for easy insertion into DIMM
- Sockets

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 13 of 46

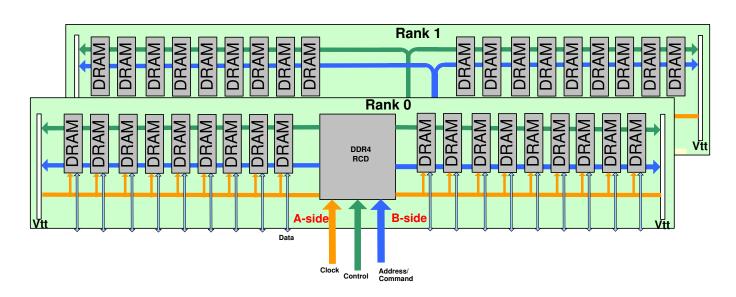

PHYSICAL LAYOUT, DUAL RANK 288 pin

- All dimensions in mm (inches)
- Refer to JEDEC Standard Mechanical Outline MO-309 for other details
- DDR4 PCB is higher and thicker then DDR3 and the gold finger pins may have a ramp zone for easy insertion into DIMM Sockets

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 14 of 46

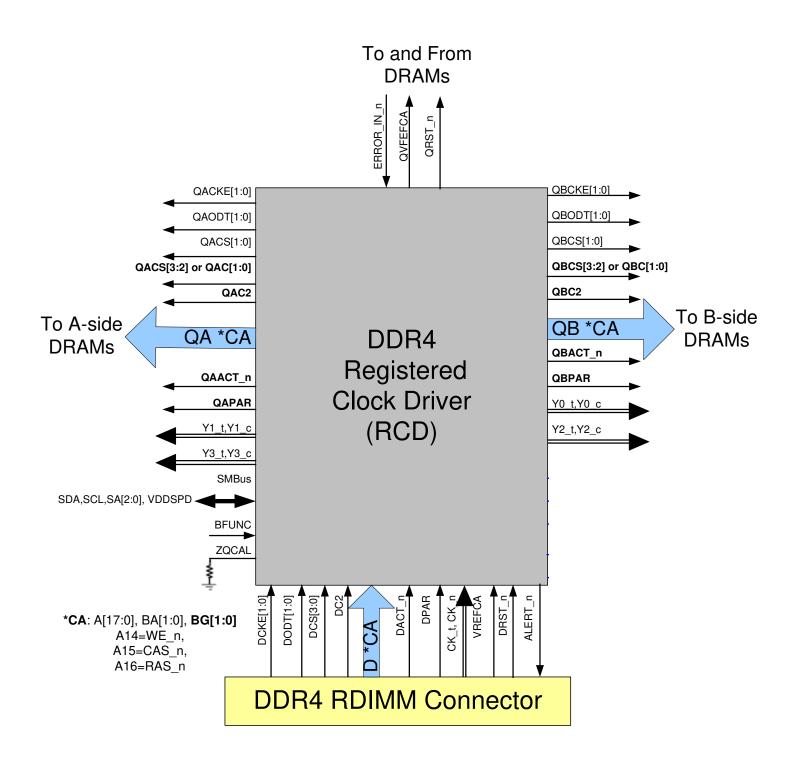


Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 15 of 46


FUNCTIONAL BLOCK DIAGRAM

BLOCK DIAGRAM, SINGLE RANK

DDR4 HOST MEMORY INTERFACE


BLOCK DIAGRAM, DUAL RANK

DDR4 HOST MEMORY INTERFACE

Datasheet	8/02/17					
PS9MRxx72x4xxx_VP						
Revision H						
Vikingtechnology.com						

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 17 of 46

SPD and THERMAL SENSOR

- Unless otherwise noted, resistor values are 15 Ω ±5%.
- See the Net Structure diagrams for all resistors associated with the command, address and control bus.
- ZQ resistors are 240 Ω ±1%. For all other resistor values, refer to the appropriate wiring diagram.
- Refer to EE1004-v and TSE2004av specifications for details.

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 18 of 46

DQ and DQS MAPPING

вуте	DQ							DQS				
Group	0	1	2	3	4	5	6	7	DQS			
0	DQ0	DQ1	DQ2	DQ3	DQ4	DQ5	DQ6	DQ7	DQS0_t	DQS0_c	DQS9_t	DQS9_c
1	DQ8	DQ9	DQ10	DQ11	DQ12	DQ13	DQ14	DQ15	DQS1_t	DQS1_c	DQS10_t	DQS10_c
2	DQ16	DQ17	DQ18	DQ19	DQ20	DQ21	DQ22	DQ23	DQS2_t	DQS2_c	DQS11_t	DQS11_c
3	DQ24	DQ25	DQ26	DQ27	DQ28	DQ29	DQ30	DQ31	DQS3_t	DQS3_c	DQS12_t	DQS12_c
4	DQ32	DQ33	DQ34	DQ35	DQ36	DQ37	DQ38	DQ39	DQS4_t	DQS4_c	DQS13_t	DQS13_c
5	DQ40	DQ41	DQ42	DQ43	DQ44	DQ45	DQ46	DQ47	DQS5_t	DQS5_c	DQS14_t	DQS14_c
6	DQ48	DQ49	DQ50	DQ51	DQ52	DQ53	DQ54	DQ55	DQS6_t	DQS6_c	DQS15_t	DQS15_c
7	DQ56	DQ57	DQ58	DQ59	DQ60	DQ61	DQ62	DQ63	DQS7_t	DQS7_c	DQS16_t	DQS16_c
8	CB0	CB1	CB2	CB3	CB4	CB5	CB6	CB7	DQS8_t	DQS8_c	DQS17_t	DQS17_c

DQ Internal Vref Specifications

DQ internal viel Spec	Cilications					
PARAMETER	SYMBOL	Min	Тур	Max	UNIT	NOTES
Vref Max operating point Range 1	Vref_max_R1		-	92%	VDDQ	1, 11
Vref Min operating point Range 1	Vref_min_R1	60%	-		VDDQ	1,11
Vref Max operating point Range 2	Vref_max_R2		-	77%	VDDQ	1, 11
Vref Min operating point Range 2	Vref_min_R2	45%	-		VDDQ	1,11
Vref Stepsize	Vref_step	0.50%	0.65%	0.80%	VDDQ	2
Vref Set Tolerance	Vref_set_tol	-1 .625%	0.00%	1.63%	VDDQ	3,4,6
		-0.15%	0.00%	0.15%	VDDQ	3,5,7
Vref Step Time	Vref_time-long	-	-	150	ns	9
	Vref_time-Short	-	-	60	ns	8
Vref Valid tolerance	Vref_val_tol	-0.15%	0.00%	0.15%	VDDQ	10

- 1. JESD8-24 specifies Vref to be 70% of VDDQ. Vref DC voltage referenced to VDDQ_DC. VDDQ_DC is 1.2V
- 2. Vref stepsize increment/decrement range. Vref at DC level.
- 3. Vref_new = Vref_old+n*Vref_step; n=number of step; if increment use "+"; If decrement use "-"
- 4. The minimum value of Vref setting tolerance=Vref_new-1.625%*VDDQ. The maximum value of Vref setting tolerance=Vref_new+1.625%*VDDQ. For n>4
- 5. The maximum value of Vref setting tolerance=Vref_new-0.15%*VDDQ. The maximum value of Vref setting tolerance=Vref_new+0.15%*VDDQ.
- 6. Measured by recording the min and max values of the Vref output over the range, drawing a straight line between those points and comparing all other Vref output settings to that line
- 7. Measured by recording the min and max values of the Vref output across 4 consecutive steps(n=4), drawing a straight line between those points and comparing all other Vref output settings to that line
- 8. Time from MRS command to increment of decrement one step size for Vref
- 9. Time from MRS command to increment of decrement more than one step size up to full range of Vref
- 10. Only applicable for DRAM component level test/characterization purpose. Not applicable for normal mode of operation. Vref valid is to qualify the step times which will be characterized at the component level.
- 11. DRAM range1 or 2 set by MRS bit MR6, A6.

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 19 of 46

OVERVIEW OF DDR4 RDIMM MODULE OPERATION

The DDR4 architecture is generally a point-to-point topology with a dedicated channel design. The highest system performance levels can be achieved when the system is configured with 1 DIMM Per Channel (1DPC). DDR4 has more features than DDR3 with a pseudo-open drain (POD12) 1.2v I/O for the data channel, trained Vref, bank groups and write CRC (Cyclic Redundancy Check). The POD12 interface only applies to the data channel. The address command channel behave like DDR3 using mid-point termination and mid-point Vref. The new bank group interleaving feature in DDR4 maximizes data transfer bandwidth.

The DDR4 RDIMM has a Registered Clock Driver (RCD) on the address, command and control lines which are center terminated as they were in DDR3. The RCD supports both RDIMM and LRDIMM modes and the default is RDIMM mode. Mode register MR7 (Manufacturing use only to program the RCD) configures the DDR4 RCD using multi-step mode register programming. MR Mode Register Read via MPR Multi-Purpose Register contains the control word bits that select the working mode.

DDR4 DRAM use pseudo-open drain (POD12) 1.2v drivers with Vdd terminations on DQ lines to increase data rates; unlike DDR3 DRAM that uses stub-series terminated logic drivers, The DRAM addressing scheme in DDR4 is organized into bank groups, Side A and Side B. The host DDR4 memory controller interleaves (multiplexes) among the bank groups to achieve high data rates. DDR4 architecture is a 8n prefetch with bank groups, including the use of two or four selectable bank groups. This will permit the DDR4 memory devices to have separate activation, read, write or refresh operations simultaneously underway in each of the unique bank groups to improve overall memory efficiency and bandwidth, especially when small memory granularities are used.

The data written to the DIMM is read back the same way. However when writing to the internal registers with a "load mode" operation, a specific address is required. This requires the controller to know if the rank is mirrored or not. There is a bit assignment in the SPD that indicates whether the module has been designed with a mirrored feature or not.

DDR4 offers ECC recovery from command and parity errors to prevent the host system from crashing. The use of CRC parity is an optional feature on address command and data; (Error command blocking when parity enabled and post CA parity. If the DIMM does not support CRC, the values of 0x00 will fill the CRC table. The new CA parity feature on the command/address bus provides a low-cost method of verifying the integrity of command and address transfers over a link, for all operations.

Some of the main attributes of DDR4 memory are:

- 1) The ACT in activate pin replaces RAS#, CAS#, and WE# commands
- 2) PAR and Alert_n for error checking
- 3) Bank group Interleaving
- 4) Improved training modes upon power-up
- 5) Nominal and dynamic ODT: Improvements to the ODT protocol and a new Park Mode allow for a nominal termination and dynamic write termination without having to drive the ODT pin
- 6) DQ bus geardown mode for 2667Mhz data rates and beyond
- 7) External VPP at 2.5V (for wordline boost)
- 8) 1.2V VDD power with power-saving features that include MPSM Maximum Power Savings Mode, Low Power Auto Self Refresh, Temperature Controlled Refresh, Fine Granularity Refresh, CMD/ADDT latency and DLL off mode
- 9) Internally generated VrefDQ and Calibration.
 - VrefDQ is supplied by the DRAM internally
 - VrefCA is supplied by the board

Important Note:

Longer boot-up times may be experienced in certain situations for controller initiated functions such as VrefDQ calibration, write leveling and other trainings for the DIMM.

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 20 of 46

DDR4 offers certain performance features that are shown in the following table:

DDR4 Performance Features	What It Improves
Command reordering at queue entry AND queue exit	Reduced impact from high-priority commands maximizes memory bandwidth and throughput, especially difficult traffic scenarios. High-priority commands go straight to the head of the command queue when they're received, but controller can delay the command's exit from the queue until the target DDR4 memory page and bank are ready to accept that command.
High-priority commands can enter the queue at head-of-queue position	Latency for high-priority commands
Rank grouping and splitting	Bandwidth for multi-rank systems
Bank split multiple transactions	Bandwidth for high-speed DRAM
Read/write grouping improvements	Bandwidth for all DRAM
Data buffers moved to ports parallel write data offload	System bandwidth on narrow transfers. re-orderable write data bandwidth,
Multiple core read data FIFOs	Bandwidth if the system bus is stalled
Programmable activate look-ahead distance	Latency for high-priority commands when autoprecharge is used
More DRAM banks (16 on each die)	More pages can be opened at the same time. And lower latency

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 21 of 46

DDR4 MODE REGISTERS

מטט-		nedið i e	.ทง											
	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	
MR0	RFU	Write	Recovery and	d RTP	DLL Reset	(:A		AS Latency	S Latency CL		CL	Burst Le	Burst Length BL	
MR1	Qoff	TDQS		Rtt_NOM		Write Leveling	RFU	RFU	Additive Latency		Ron		DLL Enable	
MR2	Write CRC	RFU	Rtt_	WR	RFU	Auto Sel	f Refresh	CWL		RFU	RFU	RFU		
MR3	MPR Rea	ad Format		D Latency C and DM	Fine	Fine Granularity Refresh		Temp Sensor	•		MPR Enable	MPR Page		
MR4	Write Preamble	Read Preamble	Read Preamble Training Enable	Self Refresh Abort Enable	CS-to-A	CS-to-Address Latency CAL		RFU	VrefDQ Monitor Enable	Temp Refresh Mode	Temp. Refresh Range	Max Power Down Enable	RFU	
MR5	Read DBI Enable	Write DBI Enable	Data Mask Enable	Parity Persistent Error	Rtt_PARK		ODT input in Power Down	Panty Error Status	CRC Error Clear	CMD Address Parity Latency		Latency		
MR6	tCCD_	L and tDLLK	Timing	RFU	RFU	VrefDQ Training enable	VrefDQ Training Range	VretDQ Training Value						
MR7		Manufacturing use only to program the RCD												

Notes:

1. Refer to JEDEC documentation for detail of the control/status bits.

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 22 of 46

DC OPERATING CONDITIONS AND CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT	NOTES
Voltage on any pin relative to GND	Vin, Vout	-0.3 ~ 1.5	V	1,
Voltage on VDD supply relative to GND	VDD	-0.3 ~ 1.5	V	1,3
Voltage on VDDQ supply relative to GND	VDDQ	-0.3 ~ 1.5	V	1,3
Voltage on VPP supply relative to GND	VPP	-0.3 ~ 3.0	V	4
Module operating temperature (ambient)	Topr	0 ~ 55	°C	1,5
Storage temperature	Tstg	-55 ~ +100	°C	1,2

Notes:

- 1. Permanent device damage may occur if 'ABSOLUTE MAXIMUM RATINGS' are exceeded. Functional operation should be restricted to recommended operating condition. Exposure to higher than recommended voltage for extended periods of time could affect device reliability. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51- 2 standard.
- 3. VDD and VDDQ must be within 300 mV of each other at all times and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREF may be equal to or less than 300 mV.
- 4. VPP must be equal or greater than VDD/VDDQ at all times.
- 5. Refer to JEDEC JC451 specification.

DRAM Component Operating Temperature Range

SYMBOL	PARAMETER	RATING	UNITS	NOTES
_	Normal Operating Temperature Range	0 to 85	°C	1,2
Toper	Extended Temperature Range	85 to 95	°C	1,3

Notes:

- 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2.
- 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 85°C under all operating conditions.
- 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
 - a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 μs. It is also possible to specify a component with 1X refresh (tREFI to 7.8μs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability.
 - b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). DDR4 SDRAM's support Auto Self-Refresh and in Extended Temperature Range and please refer to component datasheet and/or the DIMM SPD for tREFI requirements in the Extended Temperature Range

tREFI by Device Density

PARAMETER		SYMBOL	2Gb	4Gb	8Gb	16Gb	UNITS
Average periodic refresh		0°C ≤ Tcase ≤ 85°C	7.8	7.8	7.8	7.8	μs
interval	tREFI	85°C ≤ Tcase ≤ 95°C	3.9	3.9	3.9	3.9	μs

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 23 of 46

AC & DC Operating Conditions

DC OPERATING CONDITIONS AND CHARACTERISTICS (POD12)

SYMBOL	PARAMETER		RATING			NOTES	
STWIDOL	PANAMETEN	Min	Тур	Max	UNITS	NOTES	
VDD	Supply Voltage VDD: PG4:1.2V±5%, PG4L: 1.05 (TBD)	1.14	1.2	1.26	V	1,2,3	
VDDQ	Supply Voltage for Output. Values in () are at 70% of VDD	1.14 (0.798)	1.2 (0.84)	1.26 (0.882)	V	1	
VPP	2.5V +10%, -5%	2.375	2.5	2.75	V	3	
VDDSPD	2.5V± 10%	2.25	2.5	2.75	V		

- PODI2 1.2 V Pseudo Open Drain Interface has a VDDQ value of 1.2V but the reference voltage allows PODI2 to be used with other VDDQ values. POD12 signals have pull-up-only parallel input termination and have an asymmetric output drive impedance. For example, if the output drivers were using a 60 ohm pull-up drive impedance then the pull-down drivers would be expected to produce a 40 ohm pull-down drive impedance. PODI2 does not explicitly call for series termination resistors, so it is suitable for point-to-point as well as multi-drop stub environments which may require some additional termination.
- 1. JESD8-24 specifies Vref to be 70% of VDDQ. Under all conditions VDDQ must be less than or equal to VDD.
- 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
- 3. DC bandwidth is limited to 20MHz.

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 24 of 46

DC CHARACTERISTICS, IDD CURRENTS

IDD DEFINITIONS

DDRA IDD, IDD, and IPP Spess IDDOA Operating One Bank Active-Precharge Current (AL=CL-1) IPPO Operating One Bank Active-Precharge IPP Current IDD1A Operating One Bank Active-Read-Precharge Current (AL=CL-1) IPP1 Operating One Bank Active-Read-Precharge Current (AL=CL-1) IPP1 Operating One Bank Active-Read-Precharge IPP Current IDD2NA Precharge Standby Current (AL=CL-1) IPP2N Precharge Standby PP Current IDD2NL Precharge Standby Current with CAL enabled IDD2NG Precharge Standby Current with CAL enabled IDD2ND Precharge Standby Current with Gear Down mode enabled IDD2ND Precharge Standby Current with CAL parity enabled IDD2ND Precharge Standby Current with CAL parity enabled IDD2ND Precharge Standby Current with CAL parity enabled IDD2ND Precharge Standby Current IDD3NA Active Standby Current (AL=CL-1) IPP3N Active Standby IPP Current IDD4NA Operating Burst Read Current (AL=CL-1) IDD4NB Operating Burst Read Current (AL=CL-1) IDD4NB Operating Burst Read IPP Current IDD4NB Operating Burst Read IPP Current IDD4WA Operating Burst Write Current with Write DBI IDD4WA Operating Burst Write Current with Write CBC IDD4WB Operating Burst Write Current with Write CBC IDD4WB Operating Burst Write Current with Write CBC IDD4WB Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current IPP5B Burst Refresh Write IPP Current IPP5B Burst Refresh Write IPP Current IPP5F2 Burst Refresh Write IPP Current IPP5F4 Burst Refresh Write IPP Current IPP6F4 Burst Refresh Write IPP Current: Reduced Temperature Range IPP6B Self Refresh IPP Current: Extended Temperature Range IPP6B Self Refresh IPP Current: Extended Temperature Range IPP6B Auto Self-Refresh IPP Current: Extended Temperature Range IPP6B Auto Self-Refresh IPP Current: Reduced Temperature Range IPP6B Auto Self-Refresh IPP Current: Extended Temperature Range IPP6B Auto Self-Refresh IPP Cu	IDD DEI INIT	
IPPO Operating One Bank Active-Precharge IPP Current IDD1A Operating One Bank Active-Read-Precharge Current (AL=CL-1) IPP1 Operating One Bank Active-Read-Precharge IPP Current IDD2NA Precharge Standby Current (AL=CL-1) IPP2N Precharge Standby IPP Current IDD2NL Precharge Standby Current with CAL enabled IDD2NG Precharge Standby Current with CAL enabled IDD2ND Precharge Standby Current with DLL disabled IDD2ND Precharge Standby Current with DLL disabled IDD2ND Precharge Standby Current with DLL disabled IDD2ND Precharge Standby Current with CAL enabled IDD2ND Precharge Standby Current with CAL enabled IDD2ND Precharge Standby Current with CAL disabled IDD2ND Precharge Standby Current with CAL disabled IDD2ND Precharge Standby Current With CAL disabled IDD2ND Precharge Power-Down IPP Current IDD3NA Active Standby IPP Current IDD3NA Active Standby IPP Current IPP3N Active Standby IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IDD4RB Operating Burst Read IPP Current IDD04RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with CAP Parity IPP4W Operating Burst Write Current with CAP Parity IPP4W Operating Burst Write Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Auto Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	SYMBOL	DDR4 IDD, IDDQ, and IPP Specs
IDD1A Operating One Bank Active-Read-Precharge Current (AL=CL-1) IPP1 Operating One Bank Active-Read-Precharge IPP Current IDD2NA Precharge Standby Current (AL=CL-1) IPP2N Precharge Standby Current with CAL enabled IDD2NL Precharge Standby Current with CAL enabled IDD2NG Precharge Standby Current with Gar Down mode enabled IDD2ND Precharge Standby Current with DLL disabled IDD2ND Precharge Standby Current with DLL disabled IDD2ND Precharge Standby Current with CAL parity enabled IDD2N par Precharge Standby Current with CA parity enabled IPP2P Precharge Power-Down IPP Current IDD3NA Active Standby IPP Current IDD3NA Active Standby IPP Current IPP3N Active Standby IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDD4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write DBI IDD4WD Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with Write CRC IDD5F2 Burst Refresh Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F4 Burst Refresh Current (2x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F6 Self Refresh Write IPP Current: Normal Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Auto Self-Refresh IPP Current: Reduced Temperature Range		· · · · · · · · · · · · · · · · · · ·
IPP1 Operating One Bank Active-Read-Precharge IPP Current IDD2NA Precharge Standby Current (AL=CL-1) IPP2N Precharge Standby IPP Current IDD2NL Precharge Standby PP Current IDD2NL Precharge Standby Current with CAL enabled IDD2ND Precharge Standby Current with Gear Down mode enabled IDD2ND Precharge Standby Current with DLL disabled IDD2ND Precharge Standby Current with CA parity enabled IDD2N par Precharge Power-Down IPP Current IDD3NA Active Standby Current (AL=CL-1) IPP3N Active Standby IPP Current IPP3P Active Power-Down IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDD4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WB Operating Burst Write Current with Write DBI IDD4WB Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F5 Self Refresh Write IPP Current: (4x REF) IPP5F4 Burst Refresh Write IPP Current: Extended Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Auto Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current: Reduced Temperature Range		Operating One Bank Active-Precharge IPP Current
IDD2NA Precharge Standby Current (AL=CL-1) IPP2N Precharge Standby IPP Current IDD2NL Precharge Standby Current with CAL enabled IDD2NG Precharge Standby Current with Gear Down mode enabled IDD2ND Precharge Standby Current with DLL disabled IDD2ND Precharge Standby Current with DLL disabled IDD2N par Precharge Standby Current with CA parity enabled IPP2P Precharge Power-Down IPP Current IDD3NA Active Standby Current (AL=CL-1) IPP3N Active Standby IPP Current IPP3P Active Power-Down IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDD4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IPD5F2 Burst Refresh Write IPP Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (2x REF) IPP5F5 Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IPP6B Self Refresh IPP Current: Exeduced Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current: Reduced Temperature Range	IDD1A	Operating One Bank Active-Read-Precharge Current (AL=CL-1)
IPP2N Precharge Standby IPP Current IDD2NL Precharge Standby Current with CAL enabled IDD2NG Precharge Standby Current with GAL enabled IDD2ND Precharge Standby Current with Gear Down mode enabled IDD2ND Precharge Standby Current with DLL disabled IDD2N_par Precharge Standby Current with CA parity enabled IPP2P Precharge Power-Down IPP Current IDD3NA Active Standby Current (AL=CL-1) IPP3N Active Standby IPP Current IPP3P Active Standby IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDD4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current with Write DBI IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Write IPP Current (2x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6B Self Refresh IPP Current: Normal Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current: Reduced Temperature Range	IPP1	Operating One Bank Active-Read-Precharge IPP Current
IDD2NL Precharge Standby Current with CAL enabled IDD2NG Precharge Standby Current with Gear Down mode enabled IDD2ND Precharge Standby Current with DLL disabled IDD2N par Precharge Standby Current with CA parity enabled IPP2P Precharge Power-Down IPP Current IDD3NA Active Standby Current (AL=CL-1) IPP3N Active Standby IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDD4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Vrite CRC IDD4W par Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (2x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F5 Burst Refresh Write IPP Current (4x REF) IPP6B Self Refresh IPP Current: Normal Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Auto Self-Refresh IPP Current: Reduced Temperature Range	IDD2NA	Precharge Standby Current (AL=CL-1)
IDD2NG	IPP2N	Precharge Standby IPP Current
IDD2ND Precharge Standby Current with DLL disabled IDD2N_par Precharge Standby Current with CA parity enabled IPP2P Precharge Power-Down IPP Current IDD3NA Active Standby Current (AL=CL-1) IPP3N Active Standby IPP Current IPP3P Active Power-Down IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDD4RB (Optional) Operating Burst Read IPDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WD Operating Burst Write Current with Write CRC IDD4WD Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh IPP Current: Normal Temperature Range IPP6B Self Refresh IPP Current: Extended Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD2NL	Precharge Standby Current with CAL enabled
IDD2N_par	IDD2NG	Precharge Standby Current with Gear Down mode enabled
IPP2P Precharge Power-Down IPP Current IDD3NA Active Standby Current (AL=CL-1) IPP3N Active Standby IPP Current IPP3P Active Power-Down IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDDQ4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (2x REF) IPP5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6B Self Refresh IPP Current: Normal Temperature Range IPP6B Self Refresh Current: Extended Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current: Reduced Temperature Range	IDD2ND	Precharge Standby Current with DLL disabled
IDD3NA Active Standby Current (AL=CL-1) IPP3N Active Standby IPP Current IPP3P Active Power-Down IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDDQ4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with Write CRC IDD4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD2N_par	Precharge Standby Current with CA parity enabled
IPP3N Active Standby IPP Current IPP3P Active Power-Down IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDDQ4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP Current IPP Current IPP Current IPP Current IPP Current Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current	IPP2P	Precharge Power-Down IPP Current
IPP3P Active Power-Down IPP Current IDD4RA Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDDQ4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Write IPP Current (2x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD3NA	Active Standby Current (AL=CL-1)
IDD4RB Operating Burst Read Current (AL=CL-1) IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDDQ4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W_par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6B Self Refresh IPP Current: Normal Temperature Range IPP6B Self Refresh Current: Extended Temperature Range IPP6B Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IPP3N	Active Standby IPP Current
IDD4RB Operating Burst Read Current with Read DBI IPP4R Operating Burst Read IPP Current IDDQ4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6F6 Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Reduced Temperature Range IPP6R Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP Current IPP Current IPP Current IPP7 Operating bank Interleave Read IPP Current	IPP3P	•
IPP4R Operating Burst Read IPP Current IDDQ4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6F4 Burst Refresh Write IPP Current (4x REF) IPP6B Self Refresh IPP Current: Normal Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range IPP6B Self-Refresh IPP Current: Reduced Temperature Range IPP6B Self Refresh IPP Current: Reduced Temperature Range	IDD4RA	Operating Burst Read Current (AL=CL-1)
IDDQ4RB (Optional) Operating Burst Read IDDQ Current with Read DBI IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W_par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Write IPP Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IPP6R Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD4RB	Operating Burst Read Current with Read DBI
IDD4WA Operating Burst Write Current (AL=CL-1) IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W_par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IPP4R	Operating Burst Read IPP Current
IDD4WB Operating Burst Write Current with Write DBI IDD4WC Operating Burst Write Current with Write CRC IDD4W par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDDQ4RB	(Optional) Operating Burst Read IDDQ Current with Read DBI
IDD4WC Operating Burst Write Current with Write CRC IDD4W_par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD4WA	Operating Burst Write Current (AL=CL-1)
IDD4W_par Operating Burst Write Current with CA Parity IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD4WB	Operating Burst Write Current with Write DBI
IPP4W Operating Burst Write IPP Current IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD4WC	Operating Burst Write Current with Write CRC
IPP5B Burst Refresh Write IPP Current (1x REF) IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD4W_par	Operating Burst Write Current with CA Parity
IDD5F2 Burst Refresh Current (2x REF) IPP5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IPP4W	Operating Burst Write IPP Current
IPP5F2 Burst Refresh Write IPP Current (2x REF) IDD5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IPP5B	Burst Refresh Write IPP Current (1x REF)
IDD5F4 Burst Refresh Current (4x REF) IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD5F2	Burst Refresh Current (2x REF)
IPP5F4 Burst Refresh Write IPP Current (4x REF) IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IPP5F2	Burst Refresh Write IPP Current (2x REF)
IPP6N Self Refresh IPP Current: Normal Temperature Range IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD5F4	Burst Refresh Current (4x REF)
IPP6E Self Refresh IPP Current: Extended Temperature Range IDD6R Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IPP5F4	Burst Refresh Write IPP Current (4x REF)
IDD6R Self-Refresh Current: Reduced Temperature Range IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IPP6N	Self Refresh IPP Current: Normal Temperature Range
IPP6R Self Refresh IPP Current: Reduced Temperature Range IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IPP6E	Self Refresh IPP Current: Extended Temperature Range
IPP6A Auto Self-Refresh IPP Current IPP7 Operating bank Interleave Read IPP Current	IDD6R	Self-Refresh Current: Reduced Temperature Range
IPP7 Operating bank Interleave Read IPP Current	IPP6R	Self Refresh IPP Current: Reduced Temperature Range
1 3	IPP6A	Auto Self-Refresh IPP Current
IPP8 Maximum Power Down IPP Current	IPP7	Operating bank Interleave Read IPP Current
	IPP8	Maximum Power Down IPP Current

Datasheet	8/02/17
PS9MRxx72x4xxx_VP	Viking Technology
Revision H	Page 25 of 46