

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

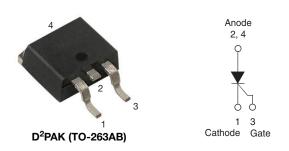
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



www.vishay.com

Vishay Semiconductors

Thyristor Surface Mount, Phase Control SCR, 8 A

PRIMARY CHARACTERISTICS							
I _{T(AV)} 8 A							
V _{DRM} /V _{RRM}	800 V						
V_{TM}	1.2 V						
I _{GT}	15 mA						
TJ	-40 to +125 °C						
Package	D ² PAK (TO-263AB)						
Circuit configuration	Single SCR						

FEATURES

 Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C

- AEC-Q101 qualified
- Meets JESD 201 class 1A whisker test
- Flexible solution for reliable AC power rectification
- Easy control peak current at charger power up to reduce passive / electromechanical components
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- On-board and off-board EV / HEV battery chargers
- Renewable energy inverters

DESCRIPTION

The VS-12TTS08SLHM3 high voltage series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications.

OUTPUT CURRENT IN TYPICAL APPLICATIONS							
APPLICATIONS SINGLE-PHASE BRIDGE THREE-PHASE BRIDGE UNITS							
Capacitive input filter $T_A = 55$ °C, $T_J = 125$ °C, common heatsink of 1 °C/W	13.5	17	А				

MAJOR RATINGS AND CHARACTERISTICS							
PARAMETER	TEST CONDITIONS	VALUES	UNITS				
I _{T(AV)}	Sinusoidal waveform	8	^				
I _{T(RMS)}		12.5	Α				
V_{RRM}/V_{DRM}		800	V				
I _{TSM}		110	Α				
V _T	8 A, T _J = 25 °C	1.2	V				
dV/dt		150	V/µs				
dl/dt		100	A/µs				
T_J	Range	-40 to +125	°C				

VOLTAGE RATINGS							
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM PEAK DIRECT VOLTAGE V	I _{RRM} / I _{DRM} AT 125 °C mA				
VS-12TTS08SLHM3	800	800	5.0				

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum average on-state current	I _{T(AV)}	IT(AV)				
Maximum RMS on-state current	I _{T(RMS)}	T _C = 108 °C, 180° conduction, half sine wave	12.5			
Maximum peak one-cycle	1	10 ms sine pulse, rated V _{RRM} applied, T _J = 125 °C	95	Α		
non-repetitive surge current	I _{TSM}	10 ms sine pulse, no voltage reapplied, T _J = 125 °C	110			
Maximum I ² t for fusing	l ² t	10 ms sine pulse, rated V_{RRM} applied, T_J = 125 °C	45	A ² s		
Maximum i-t for fusing	I-t	10 ms sine pulse, no voltage reapplied, T _J = 125 °C	64			
Maximum I ² √t for fusing	I ² √t	$t = 0.1$ ms to 10 ms, no voltage reapplied, $T_J = 125$ °C	640	A²√s		
Maximum on-state voltage drop	V_{TM}	8 A, T _J = 25 °C	1.2	V		
On-state slope resistance	r _t	T_1 = 125 °C		mΩ		
Threshold voltage	V _{T(TO)}	1J = 123 0	0.87	V		
Maximum reverse and direct leakage current	1/1	$T_J = 25 ^{\circ}\text{C}$	0.05			
Maximum reverse and direct leakage current	I _{RM} /I _{DM}	$V_R = \text{rated } V_{RRM} / V_{DRM}$	5.0			
Typical holding current	I _H	Anode supply = 6 V, resistive load, initial I_T = 1 A, T_J = 25 °C	30	mA		
Typical latching current	ΙL	Anode supply = 6 V, resistive load, T _J = 25 °C	50			
Maximum rate of rise of off-state voltage	dV/dt	$T_J = T_J \text{ max., linear to } 80 \text{ %, } V_{DRM} = R_g - k = \text{open}$	150	V/µs		
Maximum rate of rise of turned-on current	dI/dt		100	A/µs		

TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum peak gate power	P_{GM}		8.0	W	
Maximum average gate power	$P_{G(AV)}$		2.0	VV	
Maximum peak positive gate current	+I _{GM}		1.5	Α	
Maximum peak negative gate voltage	-V _{GM}		10	V	
		Anode supply = 6 V, resistive load, T_J = - 65 °C	20		
Maximum required DC gate current to trigger	I_{GT}	Anode supply = 6 V, resistive load, T _J = 25 °C	15	mA	
		Anode supply = 6 V, resistive load, T _J = 125 °C	10		
		Anode supply = 6 V, resistive load, T_J = -65 °C	1.2		
Maximum required DC gate voltage to trigger	V_{GT}	Anode supply = 6 V, resistive load, T _J = 25 °C	1	V	
		Anode supply = 6 V, resistive load, T _J = 125 °C	0.7	V	
Maximum DC gate voltage not to trigger	V_{GD}	T = 105 °C V = reted value	0.2		
Maximum DC gate current not to trigger	I _{GD}	$T_J = 125$ °C, $V_{DRM} = rated value$	0.1	mA	

SWITCHING							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Typical turn-on time	t _{gt}	T _J = 25 °C	0.8				
Typical reverse recovery time	t _{rr}	T _{.I} = 125 °C	3	μs			
Typical turn-off time	t _q	1J = 125 O	100				

www.vishay.com

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum junction and storage temperature range	T _J , T _{Stg}		-40 to +125	°C		
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	1.5			
Maximum thermal resistance, junction to ambient	R _{thJA}		62	°C/W		
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, and greased	0.5			
Approximate weight			2	g		
Approximate weight			0.07	oz.		
Marking device		Case style D ² PAK (TO-263AB)	12TTS	608SH		

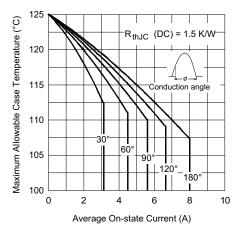


Fig. 1 - Current Rating Characteristics

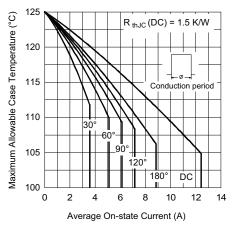


Fig. 2 - Current Rating Characteristics

Fig. 3 - On-State Power Loss Characteristics

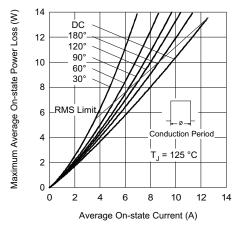


Fig. 4 - On-State Power Loss Characteristics

www.vishay.com

Vishay Semiconductors

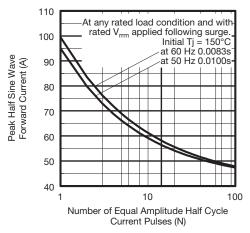


Fig. 5 - Maximum Non-Repetitive Surge Current

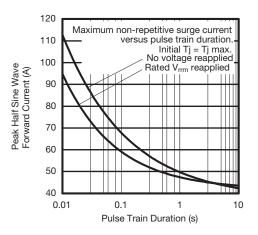


Fig. 6 - Maximum Non-Repetitive Surge Current

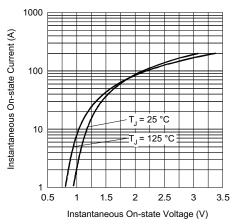
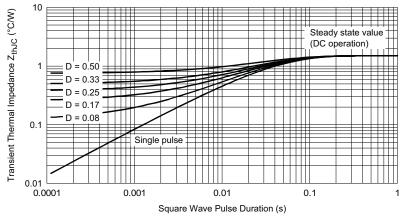
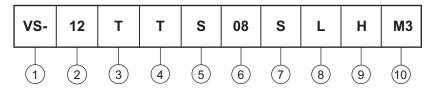


Fig. 7 - On-State Voltage Drop Characteristics




Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

- Vishay Semiconductors product
- Current rating (12.5 A)
- 3 Circuit configuration:

T = single thyristor

4 - Package:

 $T = D^2PAK (TO-263AB)$

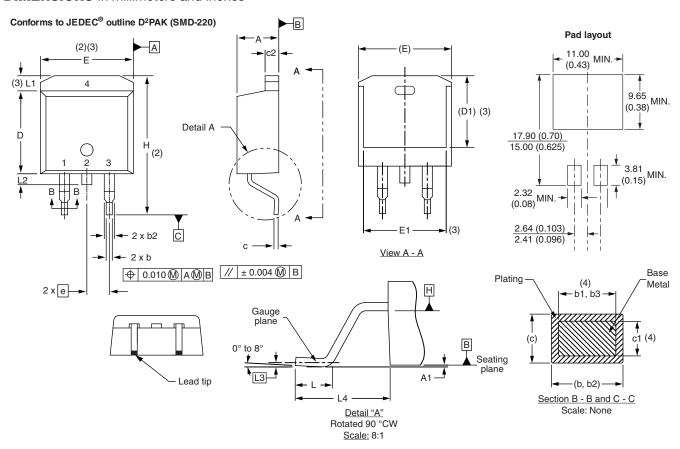
5 - Type of silicon:

S = standard recovery rectifier

- 6 Voltage rating (08 = 800 V)
- 7 S = surface mountable
- 8 L = tape and reel (left oriented), for different orientation contact factory
- 9 H = AEC-Q101 qualified
- 10 Environmental digit:

M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free

ORDERING INFORMATION (Example)							
PREFERRED P/N	QUANTITY PER T/R MINIMUM ORDER QUANTITY PACKAGING DESCRIPTION						
VS-12TTS08SLHM3	800	800	13" diameter reel				


LINKS TO RELATED DOCUMENTS					
Dimensions www.vishay.com/doc?95046					
Part marking information	www.vishay.com/doc?95444				
Packaging information	www.vishay.com/doc?96317				

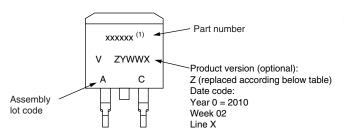
Vishay Semiconductors

D²PAK

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES	SYMBOL	MILLIM	ETERS	INC	HES	NOTES
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOIES	STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.06	4.83	0.160	0.190		D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010		Е	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039		E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4	е	2.54	BSC	0.100) BSC	
b2	1.14	1.78	0.045	0.070		Н	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4	L	1.78	2.79	0.070	0.110	
С	0.38	0.74	0.015	0.029		L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4	L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065		L3	0.25	BSC	0.010	BSC	
D	8.51	9.65	0.335	0.380	2	L4	4.78	5.28	0.188	0.208	

Notes


- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch
- (7) Outline conforms to JEDEC® outline TO-263AB

Part Marking Information

Vishay Semiconductors

D²PAK

Example: This is a xxxxxx ⁽¹⁾ with assembly lot code AC, assembled on WW 02, 2010

Note

(1) If part number contain "H" as last digit, product is AEC-Q101 qualified

ENVIRONMENTAL NAMING CODE (Z)	PRODUCT DEFINITION
A	Termination lead (Pb)-free
В	Totally lead (Pb)-free
E	RoHS-compliant and termination lead (Pb)-free
F	RoHS-compliant and totally lead (Pb)-free
М	Halogen-free, RoHS-compliant, and termination lead (Pb)-free
N	Halogen-free, RoHS-compliant, and totally lead (Pb)-free
G	Green

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.