imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

VS-25RIA Series

Vishay Semiconductors

Medium Power Phase Control Thyristors (Stud Version), 25 A

www.vishay.com

PRODUCT SUMMARY					
Package	TO-208AA (TO-48)				
Diode variation	Single SCR				
I _{T(AV)}	25 A				
V _{DRM} /V _{RRM}	100 V to 1200 V				
V _{TM}	1.70 V				
I _{GT}	60 mA				
Т _Ј	-65 °C to 125 °C				

FEATURES

- Improved glass passivation for high reliability and exceptional stability at high temperature
- High dl/dt and dV/dt capabilities
- Standard package
- Low thermal resistance
- Metric threads version available
- Types up to 1200 V V_{DRM}/V_{RRM}
- Designed and qualified for industrial and consumer level
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Medium power switching
- Phase control applications
- Can be supplied to meet stringent military, aerospace and other high reliability requirements

MAJOR RATINGS AND CHARACTERISTICS							
PARAMETER	TEST CONDITIONS	VALUES	UNITS				
1		25	А				
I _{T(AV)}	T _C	85	°C				
I _{T(RMS)}		40	A				
1	50 Hz	420					
I _{TSM}	60 Hz	440	A				
l ² t	50 Hz	867	A ² s				
141	60 Hz	790	A-S				
V _{DRM} /V _{RRM}		100 to 1200	V				
t _q	Typical	110	μs				
TJ		-65 to 125	°C				

ELECTRICAL SPECIFICATIONS

VOLTAGE	RATINGS			
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE ⁽¹⁾ V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE ⁽²⁾ V	$I_{DRM}/I_{RRM} MAXIMUM AT T_J = T_J MAXIMUM mA$
	10	100	150	20
	20	200	300	
	40	400	500	
VS-25RIA	60	600	700	10
	80	800	900	10
	100 1000		1100	
	120	1200	1300	

Notes

(1) Units may be broken over non-repetitively in the off-state direction without damage, if dl/dt does not exceed 20 A/µs

 $^{(2)}$ $\,$ For voltage pulses with $t_p \leq 5 \mbox{ ms}$

 Revision: 11-Mar-14
 1
 Document Number: 93701

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Semiconductors

PARAMETER	SYMBOL		TEST CONE	DITIONS	VALUES	UNITS
Maximum average on-state current		100% cinuosi	180° sinusoidal conduction		25	А
at case temperature	I _{T(AV)}	180° sinusoi	dal conduction		85	°C
Maximum RMS on-state current	I _{T(RMS)}				40	А
		t = 10 ms	No voltage		420	
Maximum peak, one-cycle		t = 8.3 ms	reapplied		440	
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{BBM}		350	A
		t = 8.3 ms	reapplied	Sinusoidal half wave,	370	
	t = 10 msNo voltagetximum I2t for fusing I^2t $t = 8.3 ms$ reappliedt = 10 ms100 % V_{RRM}	initial $T_J = T_J$ maximum	867			
Maximum I ² t for fusing		t = 8.3 ms	reapplied		790	A ² s
		t = 10 ms	100 % V _{BBM}		615	
		t = 8.3 ms	reapplied		560	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 to 10 T _J = T _J maxi	ms, no voltage r mum	eapplied,	8670	A²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x I_{T(AV)} < I < \pi x I$	_{T(AV)}), T _J = T _J maximum	0.99	v
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$, T _J = T _J maximu	ım	1.40	v
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), T _J = T _J maximum			10.1	
High level value of on-state slope resistance	r _{t2}	$(I > \pi x I_{T(AV)}), T_J = T_J maximum$			5.7	mΩ
Maximum on-state voltage	V _{TM}	I _{pk} = 79 A, T _J = 25 °C		1.70	V	
Maximum holding current	l _Η	T 05 °C -		(registive lead	130	
Latching current	١L	$I_{\rm J} = 25$ °C, a	$T_J = 25 \text{ °C}$, anode supply 6 V, resistive load			mA

SWITCHING					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
	$V_{DRM} \leq 600 \ V$			200	
Maximum rate of rise	$V_{DRM} \le 800 \text{ V}$	dI/dt Gate pulse = 20 V, 15 Ω , t _p = 6 µs, t _r = 0.1 µs maxin		180	A /a
of turned-on current	$V_{DRM} \leq 1000 \; V$				$I_{TM} = (2 \text{ x rated dl/dt}) \text{ A}$
$V_{DRM} \le 1600 \text{ V}$				150	
Typical turn-on time		t _{gt}	T_J = 25 °C, at rated $V_{DRM}/V_{RRM},$ T_J = 125 °C	0.9	
Typical reverse recovery time		t _{rr}	$T_{\rm J}$ = $T_{\rm J}$ maximum, I_{TM} = $I_{T(AV)},$ t_p > 200 $\mu s,$ dl/dt = - 10 A/ μs	4	μs
Typical turn-off time		tq	$ \begin{split} T_J = T_J \; maximum, \; I_{TM} = I_{T(AV)}, \; t_p > 200 \; \mu s, \; V_R = 100 \; V, \\ dI/dt = - \; 10 \; A/\mu s, \; dV/dt = 20 \; V/\mu s \; linear \; to \; 67 \; \% \; V_{DRM}, \\ gate \; bias \; 0 \; V \; to \; 100 \; W \end{split} $	110	μ3

Note

+ t_q = 10 μs up to 600 V, t_q = 30 μs up to 1600 V available on special request

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum critical rate of rise	dV/dt	$T_J = T_J$ maximum linear to 100 % rated V_{DRM}	100	V/µs
of off-state voltage	av/at	$T_J = T_J$ maximum linear to 67 % rated V_{DRM}	300 (1)	v/µs

Note

⁽¹⁾ Available with: $dV/dt = 1000 V/\mu s$, to complete code add S90 i.e. 25RIA120S90

Revision: 11-Mar-14

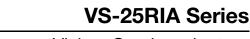
www.vishay.com

VS-25RIA Series

Vishay Semiconductors

TRIGGERING					
PARAMETER	SYMBOL	TES	CONDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}			8.0	W
Maximum average gate power	P _{G(AV)}	$T_J = T_J maximum$		2.0	vv
Maximum peak positive gate current	I _{GM}	$T_J = T_J$ maximum		1.5	А
Maximum peak negative gate voltage	-V _{GM}	$T_J = T_J$ maximum		10	V
		T _J = - 65 °C		90	mA
DC gate current required to trigger	I _{GT}	T _J = 25 °C	Maximum required gate trigger current/voltage are the lowest	60	
		T _J = 125 °C		35	
	V _{GT}	T _J = - 65 °C	value which will trigger all units	3.0	v
DC gate voltage required to trigger		T _J = 25 °C	6 V anode to cathode applied	2.0	
		T _J = 125 °C		1.0	
DC gate current not to trigger	I _{GD}	$T_J = T_J$ maximum, $V_{DRM} =$ Rated value		2.0	mA
DC gate voltage not to trigger	V _{GD}	T _J = T _J maximum, V _{DRM} = Rated value	Maximum gate current/voltage not to trigger is the maximum value which will not trigger any unit with rated V _{DRM} anode to cathode applied	0.2	V

THERMAL AND MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum operating junction and storage temperature range	T _J , T _{Stg}		- 65 to 125	°C
Maximum thermal resistance, junction to case	R _{thJC}	R _{thJC} DC operation		K/W
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat and greased 0.		
		Non-lubricated threads	3.4 ^{+ 0 - 10 %} (30)	N⋅m
Allowable mounting torque	Lubricated threads		23 ^{+ 0 - 10 %} (20)	(lbf · in)
Approvimete weight			14	g
Approximate weight			0.49	oz.
Case style		See dimensions - link at the end of datasheet	TO-208AA	(TO-48)


CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS
180°	0.17	0.13		
120°	0.21	0.22		
90°	0.27	0.30	$T_J = T_J maximum$	K/W
60°	0.40	0.42		
30°	0.69	0.70		

Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Revision: 11-Mar-14 3 Document Number: 93701

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

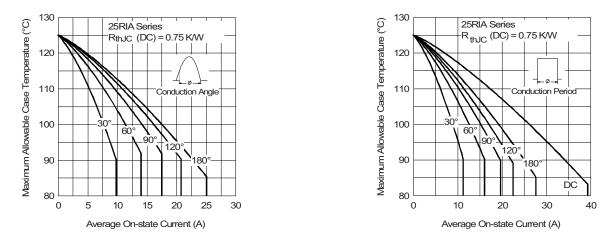


Fig. 1 - Current Ratings Characteristics

www.vishay.com

Fig. 1 - Current Ratings Characteristics

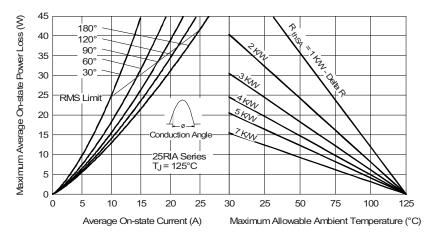


Fig. 2 - On-State Power Loss Characteristics

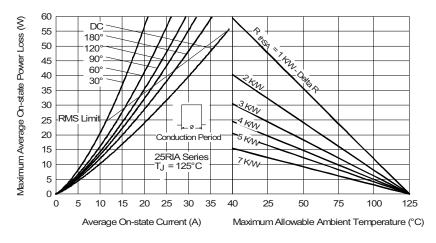


Fig. 3 - On-State Power Loss Characteristics

Vishay Semiconductors

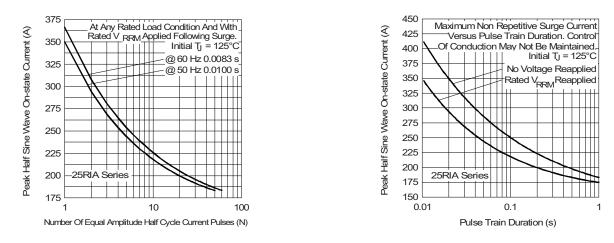


Fig. 4 - Maximum Non-Repetitive Surge Current

www.vishay.com

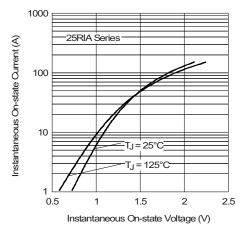


Fig. 6 - Forward Voltage Drop Characteristics

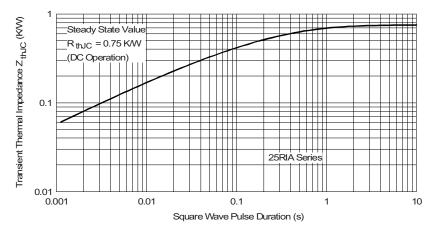


Fig. 7 - Thermal Impedance Z_{thJC} Characteristics

 Revision: 11-Mar-14
 5
 Document Number: 93701

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

VS-25RIA Series

Vishay Semiconductors

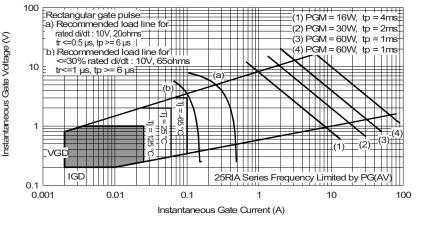


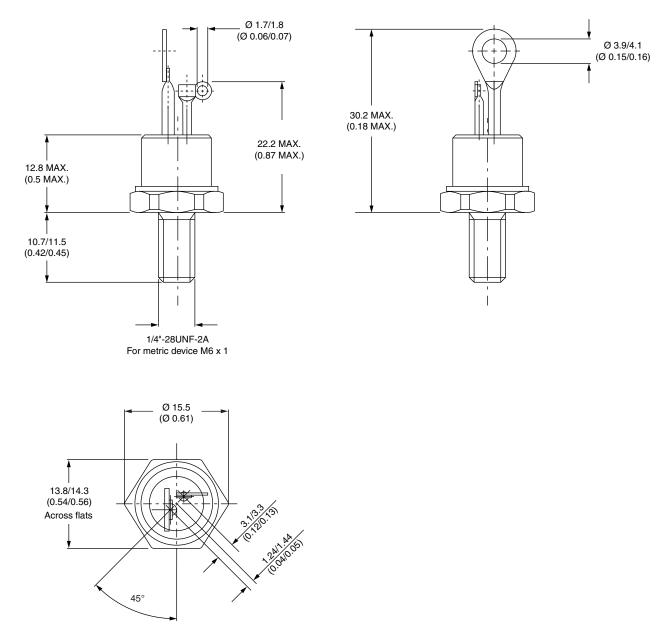
Fig. 8 - Gate Characteristics

ORDERING INFORMATION TABLE

www.vishay.com

ISHAY

Device code	VS-	25	RIA	120	М	S90	
	1	2	3	4	5	6	
	1 - 2 -		hay Sen rent coc	niconduo le	ctors pro	oduct	
	3 -	Ess	ential p	art numl	ber		
	4 -	Vol	tage coo	de x 10 =	= V _{RRM}	(see Vo	Itage Ratings table)
	5 -			d base ⁻ ase TO-		`	48) 1/4" 28UNF-2A M6 x 1
	6 -	Nor		dt:) V/µs (s) V/µs (s		,	1)


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95333			

Vishay Semiconductors

VISHAY.

TO-208AA (TO-48)

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.