: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Performance Schottky Rectifier, 2×20 A

FEATURES

- $175^{\circ} \mathrm{C} \mathrm{T}_{\jmath}$ operation
- Center tap configuration
- Low forward voltage drop

- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

RoHS COMPLANT halogen FREE

- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of $260^{\circ} \mathrm{C}$
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

This center tap Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to $175^{\circ} \mathrm{C}$ junction temperature. Typical applications are in switching power supplies, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Rectangular waveform	40	A
$\mathrm{~V}_{\text {RRM }}$		$80 / 100$	V
$\mathrm{I}_{\mathrm{FSM}}$	$\mathrm{t}_{\mathrm{p}}=5 \mu \mathrm{~s}$ sine	850	A
$\mathrm{~V}_{\mathrm{F}}$	$20 \mathrm{~A}_{\mathrm{pk}}, \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}($ per leg $)$	0.67	V
$\mathrm{~T}_{J}$	Range	-55 to +175	${ }^{\circ} \mathrm{C}$

VOLTAGE RATINGS					
PARAMETER	SYMBOL	VS-43CTQ080SPbF VS-43CTQ080-1PbF	VS-43CTQ100SPbF VS-43CTQ100-1PbF	UNITS	
Maximum DC reverse voltage	V_{R}	80	100	V	
Maximum working peak reverse voltage	$\mathrm{V}_{\mathrm{RWM}}$				

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average per leg	$I_{\text {F }}^{\text {(AV) }}$	50% duty cycle at $\mathrm{T}_{\mathrm{C}}=135^{\circ} \mathrm{C}$, rectangular waveform		20	A
forward current per device See fig. 5				40	
Maximum peak one cycle non-repetitive surge current per leg See fig. 7	$\mathrm{I}_{\text {FSM }}$	$5 \mu \mathrm{~s}$ sine or $3 \mu \mathrm{~s}$ rect. pulse	Following any rated load condition and with rated $V_{\text {RRM }}$ applied	850	
		10 ms sine or 6 ms rect. pulse		275	
Non-repetitive avalanche energy per leg	$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {AS }}=0.50 \mathrm{~A}, \mathrm{~L}=60 \mathrm{mH}$		7.50	mJ
Repetitive avalanche current per leg	$\mathrm{I}_{\text {AR }}$	Current decaying linearly to zero in $1 \mu \mathrm{~s}$ Frequency limited by T_{J} maximum $\mathrm{V}_{\mathrm{A}}=1.5 \times \mathrm{V}_{\mathrm{R}}$ typical		0.50	A

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop per leg See fig. 1	$V_{\text {FM }}{ }^{(1)}$	20 A	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.81	V
		40 A		0.98	
		20 A	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	0.67	
		40 A		0.81	
Maximum reverse leakage current per leg See fig. 2	$\mathrm{IRM}^{(1)}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=$ Rated V_{R}	1	mA
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		11	
Threshold voltage	$\mathrm{V}_{\mathrm{F}(\mathrm{T})}$	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum		0.71	V
Forward slope resistance	r_{t}			0.43	$\mathrm{m} \Omega$
Maximum junction capacitance per leg	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}_{\mathrm{DC}}$	e 100 kHz to 1 MHz), $25^{\circ} \mathrm{C}$	1480	pF
Typical series inductance per leg	$L_{\text {s }}$	Measured lead	m from package body	8.0	nH
Maximum voltage rate of change	dV/dt	Rated V_{R}		10000	V/ $/$ s

Note

${ }^{(1)}$ Pulse width $<300 \mu \mathrm{~s}$, duty cycle $<2 \%$

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {Stg }}$		-55 to +175	${ }^{\circ} \mathrm{C}$
Maximum thermal resistance, junction to case per leg	$\mathrm{R}_{\text {thJc }}$	DC operation	2.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum thermal resistance, junction to case per package			1.0	
Typical thermal resistance, case to heatsink	$\mathrm{R}_{\text {thcs }}$	Mounting surface, smooth and greased	0.50	
Approximate weight			2	g
			0.07	oz.
Mounting torque \quadminimum			6 (5)	$\mathrm{kgf} \cdot \mathrm{cm}$ (lbf • in)
			12 (10)	
		Case style TO-263AB ($\mathrm{D}^{2} \mathrm{PAK}$)	43CTQ080S	
Marking device			43CTQ100S	
		Case style TO-262AA	43CTQ080-1	
			43CTQ100-1	

VS-43CTQ...SPbF, VS-43CTQ...-1PbF Series

Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Vishay Semiconductors

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

Fig. 4 - Maximum Thermal Impedance $Z_{\text {thJc }}$ Characteristics (Per Leg)

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

Fig. 6 - Forward Power Loss Characteristics (Per Leg)

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Fig. 8 - Unclamped Inductive Test Circuit

Note

(1) Formula used: $T_{C}=T_{J}-\left(P d+P d_{R E V}\right) \times R_{\text {thJC }}$;
$\mathrm{Pd}=$ Forward power loss $=\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \times \mathrm{V}_{\mathrm{FM}}$ at $\left(\mathrm{I}_{\mathrm{F}(\mathrm{AV})} / \mathrm{D}\right)$ (see fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}}$ at $\mathrm{V}_{\mathrm{R} 1}=10 \mathrm{~V}$

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product
2 - Current rating (40 A)
3 - Circuit configuration: $\mathrm{C}=$ common cathode
4 - T = TO-220
5 - Schottky "Q" series
6 - Voltage ratings
$080=80 \mathrm{~V}$

- $\quad S=D^{2}$ PAK
- -1 = TO-262
$8 \quad-\quad$ - None $=$ tube (50 pieces)
- TRL = tape and reel (left oriented - for D2PAK only)
- TRR = tape and reel (right oriented - for D²PAK only)
$9 \quad-\quad \mathrm{PbF}=$ lead (Pb)-free

LINKS TO RELATED DOCUMENTS	
Dimensions	$\underline{w w w . v i s h a y . c o m / d o c ? 95014 ~}$
Part marking information	$\underline{w w w . v i s h a y . c o m / d o c ? 95008 ~}$
Packaging information	$\underline{w w w . v i s h a y . c o m / d o c ? 95032 ~}$
SPICE model	$\underline{w w w . v i s h a y . c o m / d o c ? 95065 ~}$

D²PAK, TO-262

DIMENSIONS - D2PAK in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES	SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.			MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	0.160	0.190		D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010		E	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039		E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4	e		BSC	0.10	BSC	
b2	1.14	1.78	0.045	0.070		H	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4	L	1.78	2.79	0.070	0.110	
c	0.38	0.74	0.015	0.029		L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4	L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065		L3		BSC	0.01	BS	
D	8.51	9.65	0.335	0.380	2	L4	4.78	5.28	0.188	0.208	

Notes

${ }^{(1)}$ Dimensioning and tolerancing per ASME Y14.5 M-1994
(2) Dimension D and E do not include mold flash. Mold flash shall not exceed $0.127 \mathrm{~mm}\left(0.005^{\prime \prime}\right)$ per side. These dimensions are measured at the outmost extremes of the plastic body
${ }^{(3)}$ Thermal pad contour optional within dimension E, L1, D1 and E1
${ }^{(4)}$ Dimension b1 and c1 apply to base metal only
(5) Datum A and B to be determined at datum plane H
${ }^{(6)}$ Controlling dimension: inch

Vishay Semiconductors
D²PAK, TO-262

DIMENSIONS - TO-262 in millimeters and inches
Modified JEDEC outline TO-262

SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
c	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
e	2.54 BSC		0.100 BSC		
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	3
L2	3.56	3.71	0.140	0.146	

Notes

(1) Dimensioning and tolerancing as per ASME Y14.5M-1994
(2) Dimension D and E do not include mold flash. Mold flash shall not exceed $0.127 \mathrm{~mm}\left(0.005^{\prime \prime}\right)$ per side. These dimensions are measured at the outmost extremes of the plastic body
(3) Thermal pad contour optional within dimension E, L1, D1 and E1
(4) Dimension b1 and c1 apply to base metal only
(5) Controlling dimension: inches

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

