

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

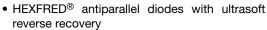
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

www.vishay.com

Vishay Semiconductors


"Half Bridge" IGBT MTP (Warp Speed IGBT), 114 A

PRODUCT SUMMARY						
V_{CES}	600 V					
$V_{CE(on)}$ typical at $V_{GE} = 15 \text{ V}$	2.3 V					
I _C at T _C = 25 °C	114 A					
Speed	30 kHz to 100 kHz					
Package	MTP					
Circuit	Half bridge					

FEATURES

RoHS

- · Very low conduction and switching losses
- Optional SMD thermistor (NTC)
- Very low junction to case thermal resistance
- UL approved file E78996
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- · Optimized for welding, UPS and SMPS applications
- · Low EMI, requires less snubbing
- Direct mounting to heatsink
- PCB solderable terminals
- · Very low stray inductance design for high speed operation

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current		T _C = 25 °C	114		
Continuous collector current	Ic	T _C = 109 °C	50		
Pulsed collector current	I _{CM}		350	A	
Peak switching current	I _{LM}		350		
Diode continuous forward current	I _F	T _C = 109 °C	34		
Peak diode forward current	I _{FM}		200	1	
Gate to emitter voltage	V _{GE}		± 20	, , , , , , , , , , , , , , , , , , ,	
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V	
Maximum navvay disaination	В	T _C = 25 °C	658	W	
Maximum power dissipation	P_D	T _C = 100 °C	263] vv	

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	$V_{GE} = 0 \text{ V, } I_{C} = 500 \mu\text{A}$	600	-	-	V
		V _{GE} = 15 V, I _C = 50 A	-	2.3	3.15	
Collector to emitter voltage	V _{CE(on)}	V _{GE} = 15 V, I _C = 100 A	-	2.5	3.2	v
		V _{GE} = 15 V, I _C = 50 A, T _J = 150 °C	-	1.72	2.17	ľ
Gate threshold voltage	V _{GE(th)}	I _C = 0.5 mA	3	-	6	
Collector to emitter leaking current I _{CES}		V _{GE} = 0 V, I _C = 600 A	-	-	0.4	mA
	ICES	$V_{GE} = 0 \text{ V}, I_{C} = 600 \text{ A}, T_{J} = 150 ^{\circ}\text{C}$	-	-	10	IIIA
Diode forward voltage drop	V _{FM}	I _F = 50 A, V _{GE} = 0 V	-	1.58	1.80	
		I_F = 50 A, V_{GE} = 0 V, T_J = 150 °C	-	1.49	1.68	V
		I _F = 100 A, V _{GE} = 0 V, T _J = 25 °C	-	1.9	2.17	
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V	-	-	± 250	nA

SWITCHING CHARACTERISTICS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg	I _C = 52 A	-	331	385	
Gate to emitter charge (turn-on)	Q _{ge}	V _{CC} = 400 V	-	44	52	nC
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V	-	133	176	
Turn-on switching loss	E _{on}	Internal gate resistors (see electrical diagram)	-	0.26	-	
Turn-off switching loss	E _{off}	$I_C = 50$ A, $V_{CC} = 480$ V, $V_{GE} = 15$ V, $L = 200$ μ H Energy losses include tail and diode reverse	-	1.2	-	mJ
Total switching loss	E _{ts}	recovery, T _J = 25 °C	-	1.46	-	
Turn-on switching loss	E _{on}	Internal gate resistors (see electrical diagram) $I_C = 50$ A, $V_{CC} = 480$ V, $V_{GE} = 15$ V, $L = 200$ μ H Energy losses include tail and diode reverse recovery, $T_J = 150$ °C	-	0.73	-	
Turn-off switching loss	E _{off}		-	1.66	-	mJ
Total switching loss	E _{ts}		-	2.39	-	
Input capacitance	C _{ies}	V _{GE} = 0 V V _{CC} = 30 V f = 1.0 MHz	-	7100	-	
Output capacitance	C _{oes}		-	510	-	pF
Reverse transfer capacitance	C _{res}		-	140	-	
Diode reverse recovery time	t _{rr}		-	82	97	ns
Diode peak reverse current	I _{rr}	$V_{CC} = 200 \text{ V, } I_{C} = 50 \text{ A}$ dl/dt = 200 A/ μ s	-	8.3	10.6	Α
Diode recovery charge	Q _{rr}		-	340	514	nC
Diode reverse recovery time	t _{rr}	V _{CC} = 200 V, I _C = 50 A dl/dt = 200 A/µs	-	137	153	ns
Diode peak reverse current	I _{rr}		-	12.7	14.8	Α
Diode recovery charge	Q _{rr}	T _J = 125 °C	-	870	1132	nC

Vishay Semiconductors

THERMISTOR SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Resistance	R ₀ ⁽¹⁾	T ₀ = 25 °C	-	30	-	kΩ
Sensitivity index of the thermistor material	β (1)(2)	T ₀ = 25 °C T ₁ = 85 °C	-	4000	-	К

Notes

 $^{(1)}$ T₀, T₁ are thermistor's temperatures

(2)
$$\frac{R_0}{R_1} = exp \left[\beta \left(\frac{1}{T_0} - \frac{1}{T_1} \right) \right]$$
, temperature in Kelvin

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Operating junction IGBT, Diode	T.,		-40	-	150	
temperature range Thermistor			-40	-	125	°C
Storage temperature range	T _{Stg}		-40	-	125	
Junction to case			-	-	0.38	
Diode	R _{thJC}			0.8	°C/W	
Case to sink per module	R _{thCS}	Heatsink compound thermal conductivity = 1 W/mK	-	0.06	-	
Clearance (1)		External shortest distance in air between 2 terminals	5.5	-	-	
Creepage (1)		Shortest distance along the external surface of the insulating material between 2 terminals	8	-	-	mm
Mounting torque to heatsink		A mounting compound is recommended and the torque should be checked after 3 hours to allow for the spread of the compound. Lubricated threads.		3 ± 10 %		Nm
Weight				66		g

Note

⁽¹⁾ Standard version only i.e. without optional thermistor

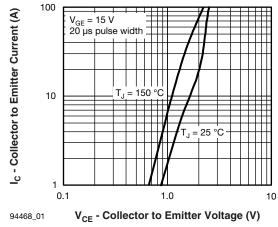


Fig. 1 - Typical Output Characteristics

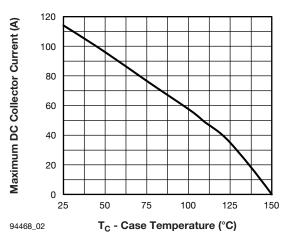


Fig. 2 - Maximum Collector Current vs. Case Temperature

www.vishay.com

Vishay Semiconductors

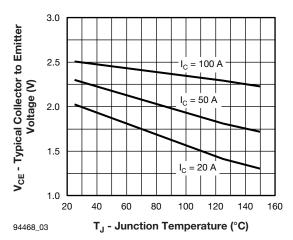


Fig. 3 - Typical Collector to Emitter Voltage vs. Junction Temperature

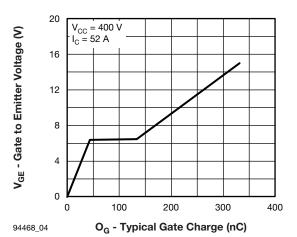


Fig. 4 - Typical Gate Charge vs. Gate to Emitter Votlage

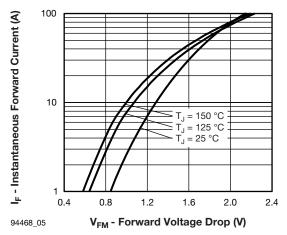


Fig. 5 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

Fig. 6 - Typical Reverse Recovery Time vs. $dI_{\mbox{\scriptsize F}}/dt$

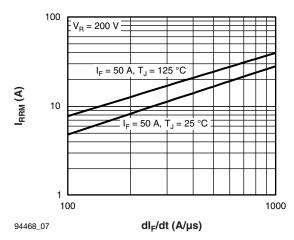


Fig. 7 - Typical Reverse Recovery Current vs. dl_F/dt

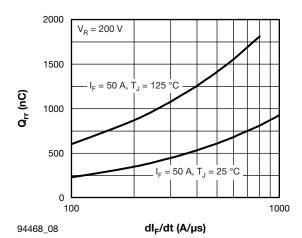
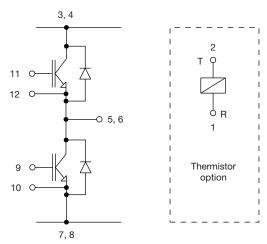



Fig. 8 - Typical Stored Charge vs. dl_F/dt

Vishay Semiconductors

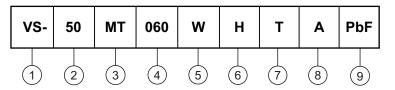
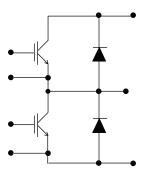

11 0 Ω 10 Ω 10 Ω 10 Ω 10 Ω 10 Ω 7, 8

Fig. 9 - Functional Diagram

Fig. 10 - Electrical Diagram


ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- 2 Current rating (50 = 50 A)
- 3 Essential part number
- 4 Voltage rating (060 = 600 V)
- 5 Speed/type (W = Warp IGBT)
- 6 Circuit configuration (H = Half bridge)
- 7 T = Thermistor
- 8 $A = Al_2O_3$ substrate
- 9 Lead (Pb)-free

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95175			

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.