imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Μ	S	-2

PRIMARY CHARACTERISTICS					
OUTPUT CURRENT IN A TYPICAL 20 kHz MOTOR DRIVE					
V _{CES}	600 V				
I_{RMS} per phase (3.1 kW total) with T_C = 90 $^\circ C$	4.6 A _{RMS}				
TJ	125 °C				
Supply voltage	360 V _{DC}				
Power factor	0.8				
Modulation depth (see fig. 1)	115 %				
V _{CE(on)} (typical) at I _C = 3.9 A, 25 °C	1.7 V				
Speed	8 kHz to 30 kHz				
Package	SIP				
Circuit configuration	Three phase inverter				

FEATURES

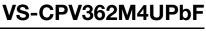
IGBT SIP Module (Fast IGBT)

- Fully isolated printed circuit board mount package
- Switching-loss rating includes all "tail" losses
- HEXFRED[®] soft ultrafast diodes
- Optimized for high speed, see fig. 1 for current vs. frequency curve
- UL approved file E78996
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The IGBT technology is the key to Vishay's Semiconductors advanced line of IMS (Insulated Metal Substrate) power modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
	1	T _C = 25 °C	7.2		
Continuous collector current, each IGBT	I _C	T _C = 100 °C	3.9		
Pulsed collector current	I _{CM} ⁽¹⁾		22	А	
Clamped inductive load current	I _{LM} ⁽²⁾		22	A	
Diode continuous forward current	I _F	T _C = 100 °C	3.4		
Diode maximum forward current	I _{FM}				
Gate to emitter voltage	V _{GE}		± 20	V	
Isolation voltage	VISOL	1 minute, any terminal to case	2500	V _{RMS}	
Maximum power dissipation, each IGBT	р	T _C = 25 °C	23	— w	
	PD	T _C = 100 °C	9.1		
Operating junction and storage temperature range			-40 to +150	°C	
Soldering temperature		10 s, (0.063" (1.6 mm) from case)	300	U	
Mounting torque		6-32 or M3 screw	5 to 7	lbf · in	
		0-32 UT IVIS SCIEW	(0.55 to 0.8)	(N · m)	


Notes

⁽¹⁾ Repetitive rating; V_{GE} = 20 V, pulse width limited by maximum junction temperature (see fig. 20)

 $^{(2)}~V_{CC}$ = 80 % (V_{GES}), V_{GE} = 20 V, L = 10 $\mu H,~R_{G}$ = 50 Ω (see fig.19)

Revision: 25-Oct-17

1

Vishay Semiconductors

RoHS

COMPLIANT

www.vishay.com

www.vishay.com

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TYP.	MAX.	UNITS		
Junction-to-case, each IGBT, one IGBT in conduction	R _{thJC} (IGBT)	-	5.5			
Junction-to-case, each diode, one diode on conduction	R _{thJC} (DIODE)	-	9.0	°C/W		
Case to sink, flat, greased surface	R _{thCS} (MODULE)	0.1	-			
Weight of module		20		g		
Weight of module		0.7		OZ.		

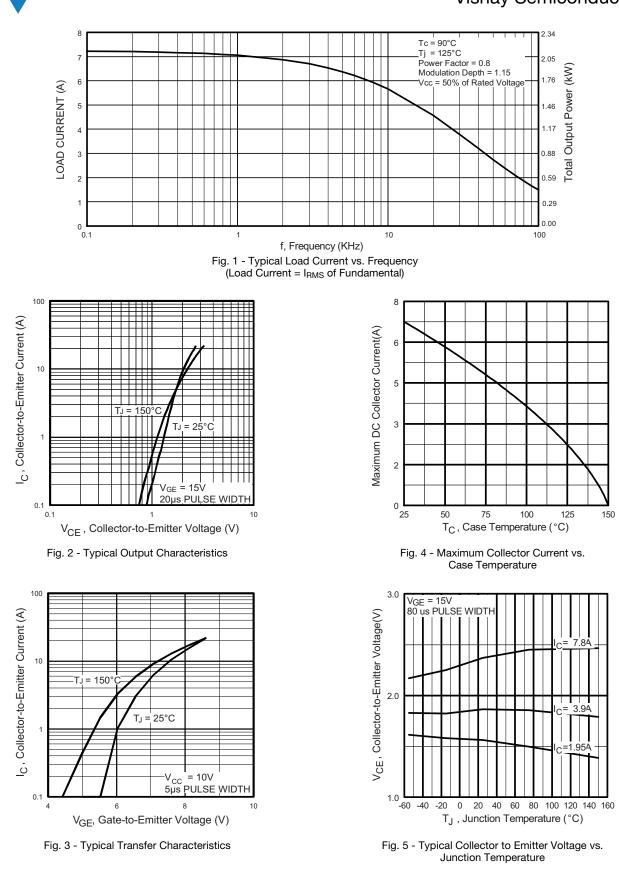
ELECTRICAL SPECIFICATIONS ($T_J = 25 \text{ °C}$ unless otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(VB)CES} ⁽¹⁾	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 250 \mu\text{A}$		600	-	-	V
Temperature coefficient of breakdown voltage	$\Delta V_{(BR)CES} / \Delta T_J$	V_{GE} = 0 V, I _C = 1 mA		-	0.63	-	V/°C
	V _{CE(on)}	I _C = 3.9 A	V _{GE} = 15 V See fig. 2, 5	-	1.70	2.2	v
Collector to emitter saturation voltage		I _C = 7.2 A		-	1.95	-	
		$I_{C} = 3.9 \text{ A}, T_{J} = 150 ^{\circ}\text{C}$		-	1.70	-	
Gate threshold voltage	V _{GE(th)}			3.0	-	6.0	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)} / \Delta T_J$	$V_{CE} = V_{GE}$, $I_C = 250 \ \mu A$		-	-11	-	mV/°C
Forward transconductance	g _{fe} ⁽²⁾	$V_{CE} = 100 \text{ V}, I_{C} = 6.5 \text{ A}$	L .	1.4	4.3	-	S
Zero gate voltage collector current	I _{CES}	V _{GE} = 0 V, V _{CE} = 600 V		-	-	250	μA
		V _{GE} = 0 V, V _{CE} = 600 V	', T _J = 150 °C	-	-	2500	μΑ
Diode forward voltage drop	V _{FM}	I _C = 8.0 A	See fig. 12	-	1.4	1.7	V
		$I_C = 8.0 \text{ A}, T_J = 150 \text{ °C}$ See fig. 13	-	1.3	1.6	v	
Gate to emittler leakage current	I _{GES}	$V_{GE} = \pm 20 \text{ V}$		-	-	± 100	nA

Notes

⁽¹⁾ Pulse width \leq 80 µs; duty factor \leq 0.1 %

⁽²⁾ Pulse width 5.0 µs, single shot

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS	
Total gate charge (turn-on)	Og	I _C = 3.9 A		-	31	47		
Gate to emitter charge (turn-on)	O _{GE}	$V_{CC} = 400 V$			-	5.0	7.5	nC
Gate to collector charge (turn-on)	O _{gc}	V _{GE} = 15 V			-	13	20	
Turn-on delay time	t _{d(on)}				-	45	-	
Rise time	t _r	T _J = 25 °C		-	22	-	20	
Turn-off delay time	t _{d(off)}	$I_{\rm C} = 3.9 \text{A}, V_{\rm C}$			-	100	160	ns
Fall time	t _f	V _{GE} = 15 V, R Energy losses	$G_{\rm G} = 50 \Omega$ s include "tail" a	nd diode	-	120	180	
Turn-on switching loss	Eon	reverse recov			-	0.13	-	
Turn-off switching loss	E _{off}	See fig. 9, 10,	,		-	0.07	-	mJ
Total switching loss	E _{ts}				-	0.20	0.3	
Turn-on delay time	t _{d(on)}	T_{J} = 150 °C I_{C} = 3.9 A, V_{CC} = 480 V V_{GE} = 15 V, R_{G} = 50 Ω Energy losses include "tail" and diode			-	42	-	ns
Rise time	t _r				-	22	-	
Turn-off delay time	t _{d(off)}				-	120	-	
Fall time	t _f	reverse recovery See fig. 9, 10, 11, 18		-	250	-		
Total switching loss	E _{ts}			-	0.35	-	mJ	
Input capacitance	Cies	$V_{GF} = 0 V$			-	530	-	
Output capacitance	Coes	$V_{CC} = 30 V$ See fig. 7 f = 1.0 MHz		See fig. 7	-	39	-	pF
Reverse transfer capacitance	C _{res}				-	7.4	-	
Diode reverse recovery time	t _{rr}	$T_J = 25 \degree C$ See fig. 14			-	37	55	ns
Didde reverse recovery time	۲r	$T_J = 125 \text{ °C}$		-	55	90	115	
Diode peak reverse recovery current	I _{rr}	T _J = 25 °C	See fig. 15	I _F = 8.0 A V _R = 200 V	-	3.5	5.0	A
		T _J = 125 °C			-	4.5	8.0	
Diode reverse recovery charge	Q _{rr}	$T_J = 25 \ ^\circ C$	See fig. 16	dl/dt = 200	-	65	138	nC
bloce reverse recovery charge	۹rr	$T_J = 125 \text{ °C}$ See fig. 16	A/µs	-	124	360		
Diode peak rate of fall of	dl _{(rec)M} /dt	T _J = 25 °C See fig. 17		-	240	-	A/µs	
recovery during t _b	ur(rec)M/ ut	T _J = 125 °C			-	210	-	πµs


Revision: 25-Oct-17

2

Document Number: 94483

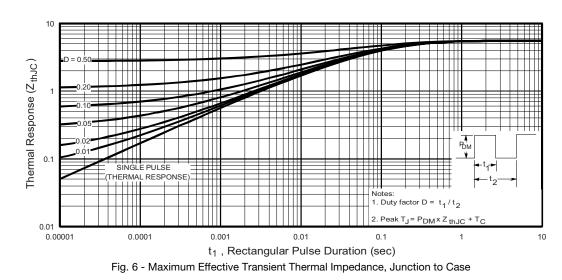
For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

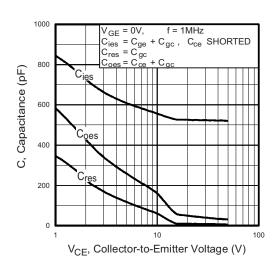
Vishay Semiconductors

Revision: 25-Oct-17

ISHA

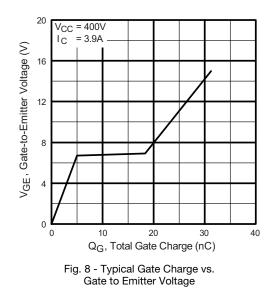
www.vishay.com


3


Document Number: 94483

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-CPV362M4UPbF


Vishay Semiconductors

www.vishay.com

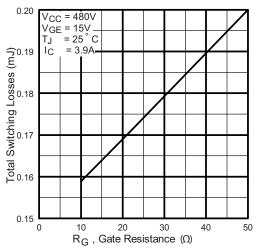


Fig. 9 - Typical Switching Losses vs. Gate Resistance

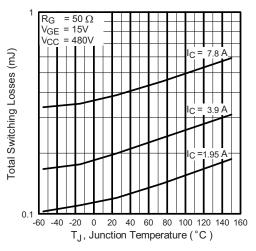
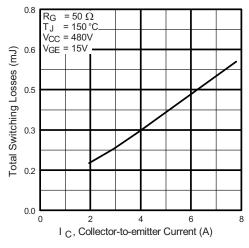
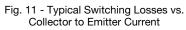


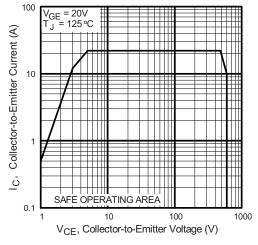
Fig. 10 - Typical Switching Losses vs. Junction Temperature

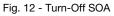
Revision: 25-Oct-17

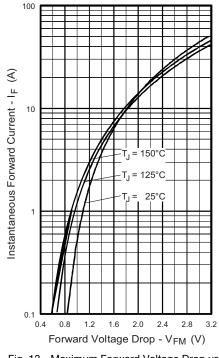
4


Document Number: 94483


For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>






Vishay Semiconductors

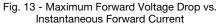


Fig. 14 - Typical Reverse Recovery Time vs. dl_F/dt

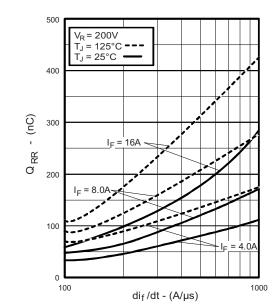


Fig. 16 - Typical Stored Charge vs. dl_F/dt

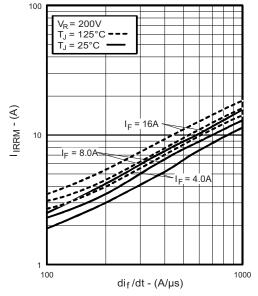
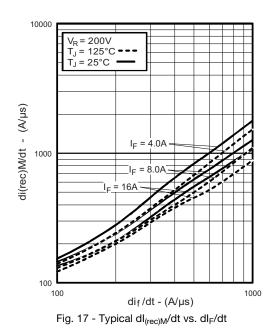



Fig. 15 - Typical Recovery Current vs. dl_F/dt

VS-CPV362M4UPbF

Vishay Semiconductors

Revision: 25-Oct-17 Document Number: 94483 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

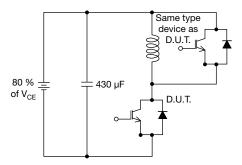


Fig. 18a - Test Circuit for Measurement of I_{LM} , E_{on} , $E_{off(diode)}$, t_{rr} , Q_{rr} , I_{rr} , $t_{d(on)}$, t_r , $t_{d(off)}$, t_f

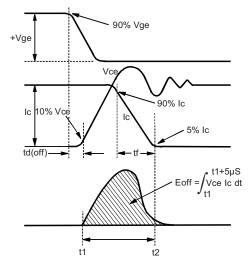


Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$

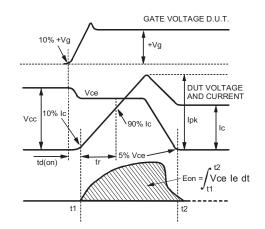


Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining E_{on} , $t_{d(on)}$, t_r

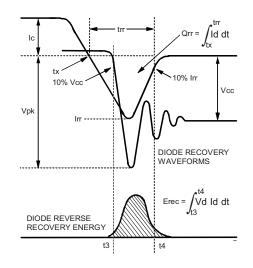


Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E_{rec}, t_{rr}, Q_{rr}, I_{rr}

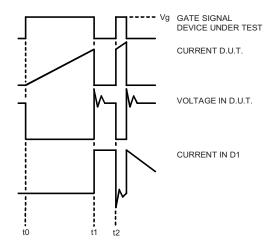


Fig. 18e - Macro Waveforms for Fig. 18a's Test Circuit

VS-CPV362M4UPbF

Vishay Semiconductors

VS-CPV362M4UPbF

Vishay Semiconductors

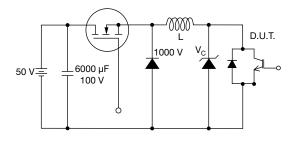


Fig. 19 - Clamped Inductive Load Test Circuit

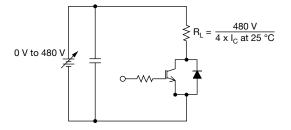
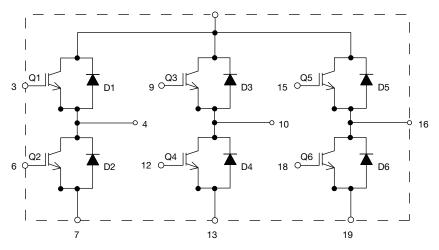
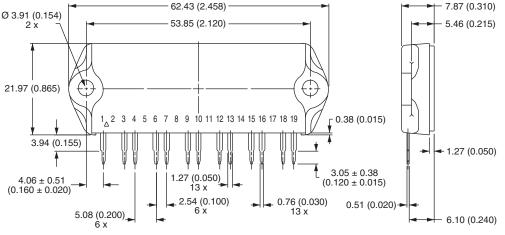



Fig. 20 - Pulsed Collector Current Test Circuit

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95066			

Vishay Semiconductors

IMS-2 (SIP)

DIMENSIONS in millimeters (inches)

IMS-2 Package Outline (13 Pins)

Notes

- $^{(1)}$ Tolerance uless otherwise specified \pm 0.254 mm (0.010")
- ⁽²⁾ Controlling dimension: inch
- ⁽³⁾ Terminal numbers are shown for reference only

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.