

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

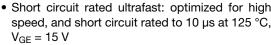
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


IGBT SIP Module (Short Circuit Rated Ultrafast IGBT)

IMS-2

PRIMARY CHARACTERISTICS					
OUTPUT CURRENT IN A TYPICAL 20 kHz MOTOR DRIVE					
V _{CES}	600 V				
I _{RMS} per phase (3.1 kW total) with T _C = 90 °C	11 A _{RMS}				
TJ	125 °C				
Supply voltage	360 V _{DC}				
Power factor	0.8				
Modulation depth (see fig. 1)	115 %				
$V_{CE(on)}$ (typical) at $I_C = 13$ A, 25 °C	1.8 V				
Speed	8 kHz to 30 kHz				
Package	SIP				
Circuit configuration	Three phase inverter				

FEATURES

RoHS COMPLIANT

- Fully isolated printed circuit board mount COMPLIANT package
- Switching-loss rating includes all "tail" losses
- HEXFRED® soft ultrafast diodes
- UL approved file E78996
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The IGBT technology is the key to Vishay's Semiconductors advanced line of IMS (Insulated Metal Substrate) power modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
On the second second		T _C = 25 °C	24		
Continuous collector current	I _C	T _C = 100 °C	13	А	
Pulsed collector current	I _{CM} ⁽¹⁾		48	A	
Clamped inductive load current	I _{LM} (2)		48		
Short circuit withstand time	t _{SC}	T _C = 100 °C	9.3	μs	
Gate to emitter voltage	V_{GE}		± 20	V	
Isolation voltage	V _{ISOL}	t = 1 min, any terminal to case	2500	V _{RMS}	
Maximum power dissipation, each IGBT	В	T _C = 25 °C	63	W	
	P_D	T _C = 100 °C	25		
Operating junction and storage temperature range	T _J , T _{Stg}		-55 to +150	°C	
Soldering temperature		For 10 s, (0.063" (1.6 mm) from case)	300		
Mounting torque		6-32 or M3 screw	5 to 7 (0.55 to 0.8)	lbf · in (N · m)	

Notes

⁽¹⁾ Repetitive rating; $V_{GE} = 20 \text{ V}$, pulse width limited by maximum junction temperature (see fig. 20)

 $^{^{(2)}}$ V_{CC} = 80 % (V_{CES}), V_{GE} = 20 V, L = 10 $\mu H,~R_{G}$ = 10 Ω (see fig. 19)

VS-CPV364M4KPbF

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TYP.	MAX.	UNITS		
Junction to case, each IGBT, one IGBT in conduction	R _{thJC} (IGBT)	-	2.2			
Junction to case, each diode, one diode in conduction	R _{thJC} (DIODE)	-	3.7	°C/W		
Case to sink, flat, greased surface	R _{thCS} (MODULE)	0.10	-			
Weight of module		20	-	g		
weight of module		0.7	-	oz.		

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES} (1)	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$		600	-	-	V
Temperature coeff. of breakdown voltage	$\Delta V_{(BR)CES}/\Delta T_J$	$V_{GE} = 0 \text{ V}, I_{C} = 1.0 \text{ mA}$		-	0.63	-	V/°C
Collector to emitter saturation voltage		I _C = 13 A	V _{GE} = 15 V See fig. 2, 5	-	1.80	2.3	- V
	V _{CE(on)}	I _C = 24 A		-	1.80	-	
		I _C = 13 A, T _J = 150 °C		-	1.56	1.73	
Gate threshold voltage	$V_{GE(th)}$	V _{CE} = V _{GE} , I _C = 250 μA		3.0	-	6.0	
Temperature coeff. of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$			-	-13	-	mV/°C
Forward transconductance	g _{fe} ⁽²⁾	V _{CE} = 100 V, I _C = 10 A		11	18	-	S
		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$		-	=.	250	
Zero gate voltage collector current	I _{CES}	V _{GE} = 0 V, V _{CE} = 600 V, T _J = 150 °C		-	=.	3500	μΑ
Diada face and allowed as		I _C = 15 A	Coofie 12	-	1.3	1.7	V
Diode forward voltage drop	V_{FM}	I _C = 15 A, T _J = 150 °C	See fig. 13	-	1.2	1.6]
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V		-		± 100	nA

Notes

 $^{(1)}~$ Pulse width $\leq 80~\mu s,~duty~factor \leq 0.1~\%$

(2) Pulse width 5.0 µs; single shot

PARAMETER	SYMBOL		TEST CONDI	TIONS	MIN.	TYP.	MAX.	UNITS	
Total gate charge (turn-on)	Qg	I _C = 13 A V _{CC} = 400 V		-	110	170	nC		
Gate to emitter charge (turn-on)	Q _{ge}			-	14	21			
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V see fig. 8			-	49	74		
Turn-on delay time	t _{d(on)}			-	50	-			
Rise time	t _r	T _{.1} = 25 °C			-	30	-		
Turn-off delay time	t _{d(off)}	$I_{\rm C} = 13 \rm A, V_{\rm C}$			-	110	170	ns	
Fall time	t _f	$V_{GE} = 15 \text{ V},$	$H_G=10~\Omega$ es include "tail	" and diode	-	91	140	1	
Turn-on switching loss	E _{on}	reverse reco	overy	and diode	-	0.56	-		
Turn-off switching loss	E _{off}	see fig. 9, 10	see fig. 9, 10, 18			0.28	-	mJ	
Total switching loss	E _{ts}	1	-	0.84	1.1				
Short circuit withstand time	t _{sc}	$V_{CC} = 360 \text{ V}$ $V_{GE} = 15 \text{ V}$, T _J = 125 °C R _G = 10 Ω, V _C	_{PK} < 500 V	10	-	-	μs	
Turn-on delay time	t _{d(on)}		-	47	-	- ns			
Rise time	t _r	$T_{J}=150~^{\circ}C,~see~fig.~9,~10,~11,~18$ $I_{C}=13~A,~V_{CC}=480~V$ $V_{GE}=15~V,~R_{G}=10~\Omega$ energy losses include "tail" and diode reverse recovery Measured 5 mm from package		-	30		-		
Turn-off delay time	t _{d(off)}			-	250		-		
Fall time	t _f			-	150	-			
Total switching loss	E _{ts}			-	1.28	-	mJ		
Internal emitter inductance	LE			-	7.5	-	nH		
Input capacitance	C _{ies}	V _{GE} = 0 V V _{CC} = 30 V f = 1.0 MHz		-	1600	-			
Output capacitance	C _{oes}				-	130	-	рF	
Reverse transfer capacitance	C_{res}	see fig. 7			-	55	-		
Die de la companya de		T ₁ = 25 °C	°C See fig. 14		-	42	60		
Diode reverse recovery time	t _{rr}	T _J = 125 °C		See fig. 14	-	74	120	ns	
Diada and management		T _J = 25 °C	See fig. 15 I _F = 15 A		-	4.0	6.0		
Diode peak reverse recovery charge	I _{rr}	T _J = 125 °C		1F - 10 /	-	6.5	10	A	
Diada vayaraa vaaayan aharra	0	T _J = 25 °C	———— See fig. 16 L	Coofie 10	V _R = 200 V dl/dt = 200 A/µs	-	80	180	
Diode reverse recovery charge	Q_{rr}	T _J = 125 °C		10	-	220	600	nC	
Diode peak rate of fall of recovery	dl/d+	$T_J = 25 ^{\circ}\text{C}$ $T_J = 125 ^{\circ}\text{C}$ See fig. 17		-	188	-	A/µs		
during t _b	dI _{(rec)M} /dt			_	160	-	ΑνμS		

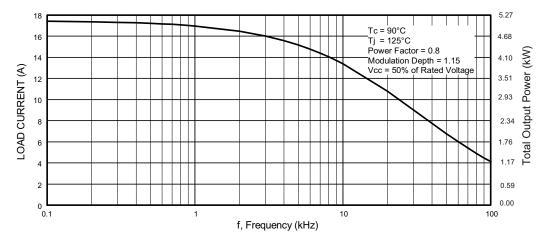


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of Fundamental)

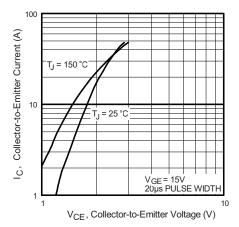


Fig. 2 - Typical Output Characteristics

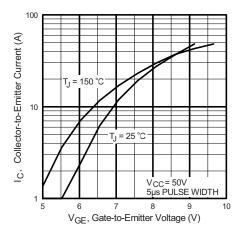


Fig. 3 - Typical Output Characteristics

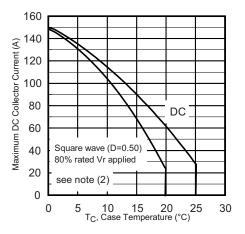


Fig. 4 - Maximum Collector Current vs. Case Temperature

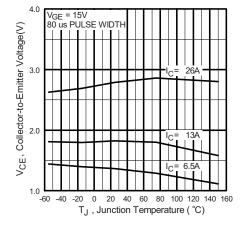


Fig. 5 - Typical Collector to Emitter Voltage vs. Junction Temperature

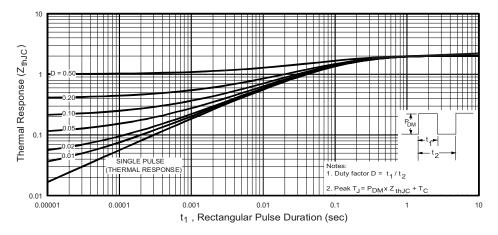


Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction to Case

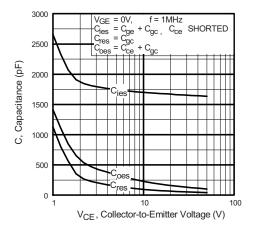


Fig. 7 - Typical Capacitance vs. Collector to Emitter Voltage

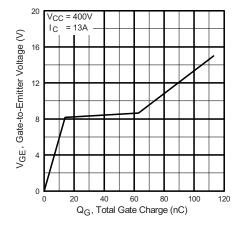


Fig. 8 - Typical Gate Charge vs. Gate to Emitter Voltage

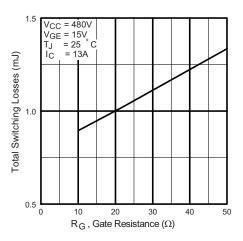


Fig. 9 - Typical Switching Losses vs. Gate Resistance

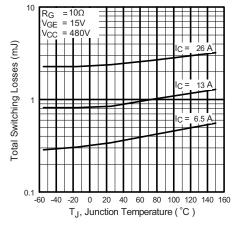


Fig. 10 - Typical Switching Losses vs. Junction Temperature

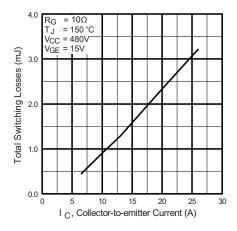


Fig. 11 - Typical Switching Losses vs. Collector to Emitter Current

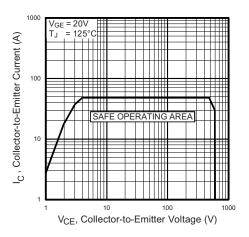


Fig. 12 - Turn-Off SOA

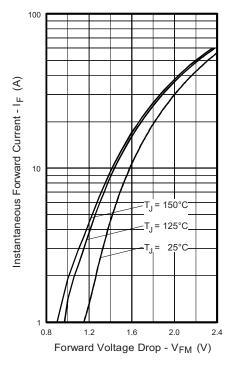


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

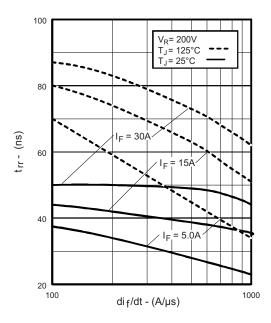


Fig. 14 - Typical Reverse Recovery Time vs. dI_F/dt

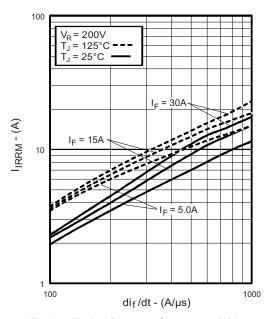


Fig. 15 - Typical Recovery Current vs. dI_F/dt

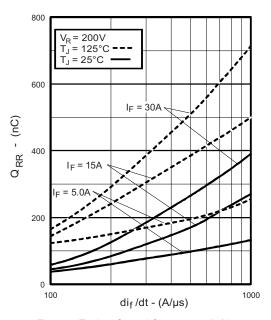


Fig. 16 - Typical Stored Charge vs. dl_F/dt

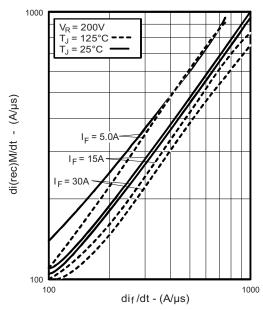


Fig. 17 - Typical $dl_{(rec)M}/dt$ vs dl_F/dt

GATE VOLTAGE D.U.T.

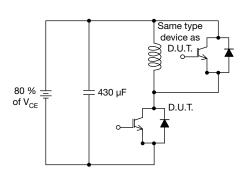
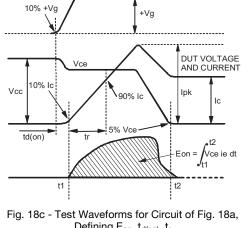



Fig. 18a - Test Circuit for Measurement of I_{LM} , E_{on} , $E_{off(diode)}$, t_{rr} , Q_{rr} , I_{rr} , $t_{d(on)}$, t_r , $t_{d(off)}$, t_f

Defining E_{on} , $t_{d(on)}$, t_r

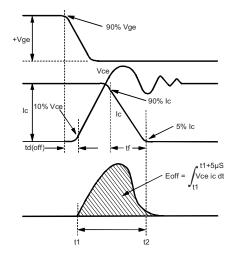


Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining E_{off} , $t_{d(off)}$, t_{f}

Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E_{rec} , t_{rr} , Q_{rr} , I_{rr}

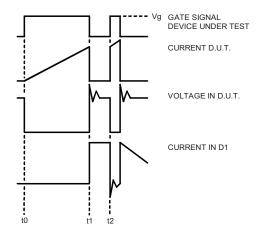
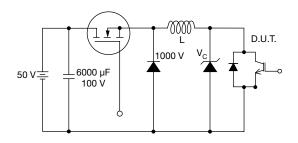



Fig. 18e - Macro Waveforms for Figure 18a's Test Circuit

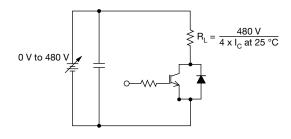
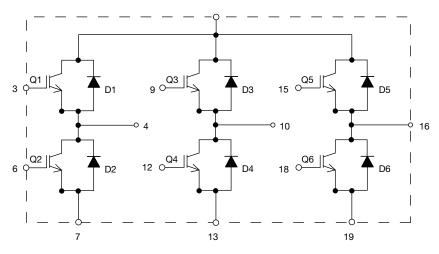
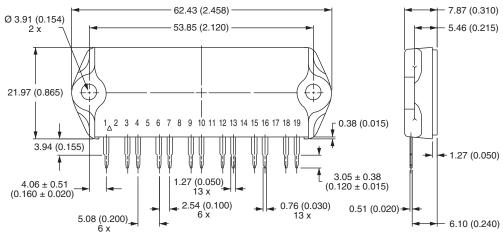



Fig. 19 - Clamped Inductive Load Test Circuit

Fig. 20 - Pulsed Collector Current Test Circuit

CIRCUIT CONFIGURATION



LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95066		

IMS-2 (SIP)

DIMENSIONS in millimeters (inches)

IMS-2 Package Outline (13 Pins)

Notes

- $^{(1)}$ Tolerance uless otherwise specified \pm 0.254 mm (0.010")
- (2) Controlling dimension: inch
- (3) Terminal numbers are shown for reference only

Document Number: 95066 Revision: 30-Jul-07

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.