imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

VS-GA200SA60UP

Vishay Semiconductors

Insulated Gate Bipolar Transistor (Ultrafast Speed IGBT), 100 A

www.vishay.com

PRODUCT SUMMARY				
V _{CES}	600 V			
V _{CE(on)} (typical)	1.92 V			
V _{GE}	15 V			
Ι _C	100 A			
Speed	8 kHz to 30 kHz			
Package	SOT-227			
Circuit	Single switch no diode			

FEATURES

• Ultrafast: optimized for minimum saturation voltage and speed up to 30 kHz in hard switching, > 200 kHz in resonant mode

- ROHS COMPLIANT
- Very low conduction and switching losses
- Fully isolate package (2500 V_{AC/RMS})
- Very low internal inductance (≤ 5 nH typical)
- Industry standard outline
- UL approved file E78996
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Designed for increased operating efficiency in power conversion: UPS, SMPS, welding, induction heating
- Lower overall losses available at frequencies = 20 kHz
- Easy to assemble and parallel
- Direct mounting to heatsink
- Lower EMI, requires less snubbing
- · Plug-in compatible with other SOT-227 packages

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{CES}		600	V	
Continuous collector current		T _C = 25 °C	200		
	Ι _C	T _C = 100 °C	100		
Pulsed collector current	I _{CM}		400	А	
Clamped inductive load current	$I_{LM} \qquad \begin{array}{c} V_{CC} = 80 \ \% \ (V_{CES}), \ V_{GE} = 20 \ V, \ L = 10 \ \mu \\ R_g = 2.0 \ \Omega, \ see \ fig. \ 13a \end{array}$		400		
Gate to emitter voltage	V _{GE}		± 20	V	
Reverse voltage avalanche energy	E _{ARV}	Repetitive rating; pulse width limited by maximum junction temperature	160	mJ	
RMS isolation voltage	VISOL	Any terminal to case, t = 1 min	2500	V	
Maximum power dissipation	P _D	T _C = 25 °C	500	w	
		T _C = 100 °C	200		
Operating junction and storage temperature range	T _J , T _{Stg}		-55 to +150	°C	
Mounting torque		6-32 or M3 screw	1.3 (12)	Nm (lbf.in)	

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Junction and storage temperature range	T _J , T _{Stg}		-55	-	150		
Thermal resistance, junction to case	R _{thJC}	hJC		-	0.25	°C/W	
Thermal resistance case to heatsink	R _{thCS}	Flat, greased, surface	-	0.05	-		
Weight			-	30	-	g	
Mounting torque		Torque to terminal	-	-	1.1 (9.7)	Nm (lbf.in)	
Mounting torque		Torque to heatsink	-	-	1.3 (11.5)	Nm (lbf.in)	
Case style			SOT-227				

Revision: 20-May-16

1

Document Number: 94364

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS ($T_J = 25 \text{ °C}$ unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	V_{GE} = 0 V, I_C = 250 μ A	$V_{GE} = 0 \text{ V}, I_{C} = 250 \ \mu\text{A}$		-	-	
Emitter to collector breakdown voltage	V _{(BR)ECS}	V_{GE} = 0 V, I_C = 1.0 A Pulse width \leq 80 $\mu s;$ duty factor \leq 0.1 %		18	-	-	V
Temperature coefficient of breakdown voltage	$\Delta V_{(BR)CES} / \Delta T_J$	$V_{GE} = 0 \text{ V}, I_{C} = 10 \text{ mA}$		-	0.38	-	V/°C
Collector to emitter saturation voltage	V _{CE(on)}	I _C = 100 A	V _{GE} = 15 V See fig. 2, 5	-	1.60	1.9	v
		I _C = 200 A		-	1.92	-	
		I_{C} = 100 A, T_{J} = 150 °C		-	1.54	-	
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 250 \ \mu A$		3.0	-	6.0	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)} / \Delta T_J$	$V_{CE} = V_{GE}$, $I_C = 2.0$ mA		-	-11	-	mV/°C
Forward transconductance		V_{CE} = 100 V, I _C = 100 A Pulse width 5.0 µs, single shot		79	-	-	S
		$V_{GE} = 0 V, V_{CE} = 600 V$	_E = 600 V		-	1.0	mA
Zero gate voltage collector current	ICES	V_{GE} = 0 V, V_{CE} = 600 V, T_{J} = 150 °C		-	-	10	- IIIA
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V		-	-	± 250	nA

SWITCHING CHARACTERIS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg			770	1200	
Gate-emitter charge (turn-on)		I _C = 100 A V _{CC} = 400 V		100	150	nC
3 ()	Q _{ge}					
Gate-collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V; See fig. 8	-	260	380	
Turn-on delay time	t _{d(on)}	T 05 00	-	54	-	- ns
Rise time	t _r	T _J = 25 °C I _C = 100 A	-	79	-	
Turn-off delay time	t _{d(off)}	$V_{\rm CC} = 480 \text{ V}$	-	130	200	
Fall time	t _f	V _{GE} = 15 V	-	300	450	
Turn-on switching loss	Eon	$R_g = 2.0 \Omega$ Energy losses include "tail" See fig. 9, 10, 14	-	0.98	-	
Turn-off switching loss	E _{off}		-	3.48	-	mJ
Total switching loss	E _{ts}		-	4.46	7.6	
Turn-on delay time	t _{d(on)}	$\begin{array}{l} T_{J} = 150 \ ^{\circ}\text{C} \\ I_{C} = 100 \ \text{A}, \ V_{CC} = 480 \ \text{V} \\ V_{GE} = 15 \ \text{V}, \ R_{g} = 2.0 \ \Omega \\ \text{Energy losses include "tail"} \\ \text{See fig. 10, 11, 14} \end{array}$	-	56	-	
Rise time	t _r		-	75	-	1
Turn-off delay time	t _{d(off)}		-	160	-	ns
Fall time	t _f		-	460	-	
Total switching loss	E _{ts}		-	7.24	-	mJ
Internal emitter inductance	LE	Measured 5 mm from package	-	5.0	-	nH
Input capacitance	C _{ies}	V _{GE} = 0 V V _{CC} = 30 V	-	16 500	-	
Output capacitance	C _{oes}		-	1000	-	pF
Reverse transfer capacitance	C _{res}	f = 1.0 MHz; See fig. 7	-	200	-	1

Revision: 20-May-16

Document Number: 94364

Vishay Semiconductors

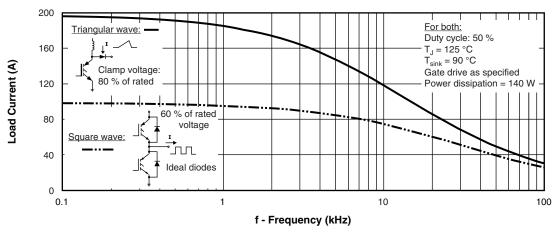
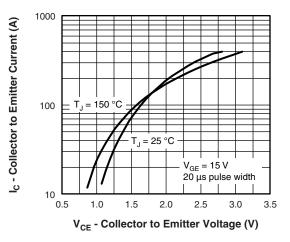



Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of Fundamental)

www.vishay.com

Fig. 2 - Typical Output Characteristics

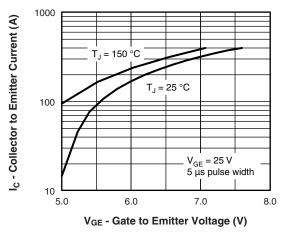
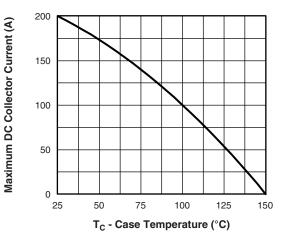
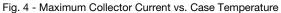
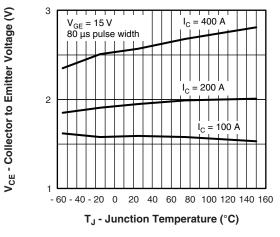
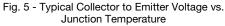






Fig. 3 - Typical Transfer Characteristics

Revision: 20-May-16

3

Document Number: 94364

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-GA200SA60UP www.vishay.com **Vishay Semiconductors** 1 Z_{thJC} - Thermal Response Π D = 0.50 0.1 ł D = 0.20D = 0.10 D = 0.05 0 02 D 0.01 D = 0.01 Notes: Single pulse 1. Duty factor $D = t_1/t_2$ (thermal resistance) 2. Peak T_J = P_{DM} x Z_{thJC} 0.001 0.001 0.00001 0.0001 0.01 0.1 1 t₁ - Rectangular Pulse Duration (s)

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction to Case

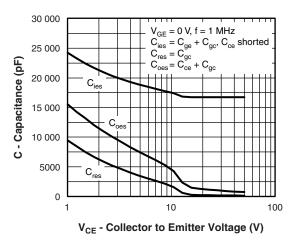


Fig. 7 - Typical Capacitance vs. Collector to Emitter Voltage

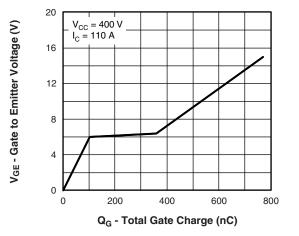


Fig. 8 - Typical Gate Charge vs. Gate to Emitter Voltage

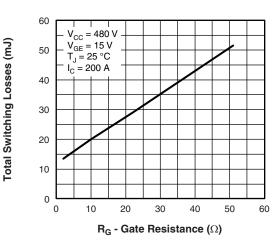


Fig. 9 - Typical Switching Losses vs. Gate Resistance

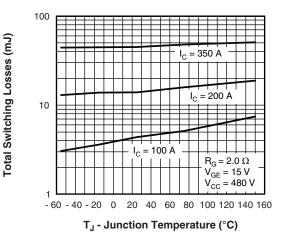


Fig. 10 - Typical Switching Losses vs. Junction Temperature

Revision: 20-May-16

4

Document Number: 94364

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

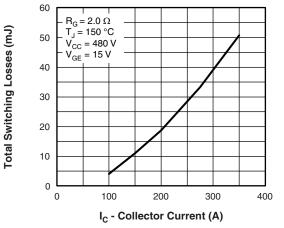


Fig. 11 - Typical Switching Losses vs. Collector Current

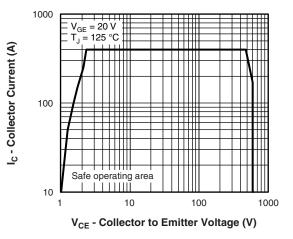
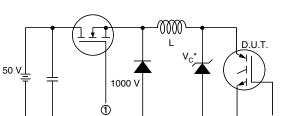
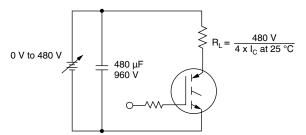



Fig. 12 - Turn-Off SOA


VS-GA200SA60UP

Vishay Semiconductors

2

* Driver same type as D.U.T.; V_C = 80 % of V_{CE} (max)
Note: Due to the 50 V power supply, pulse width and inductor will increase to obtain rated I_d

Fig. 13a - Clamped Inductive Load Test Circuit

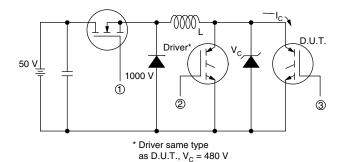


Fig. 14a - Switching Loss Test Circuit

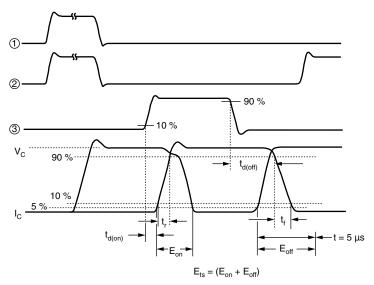
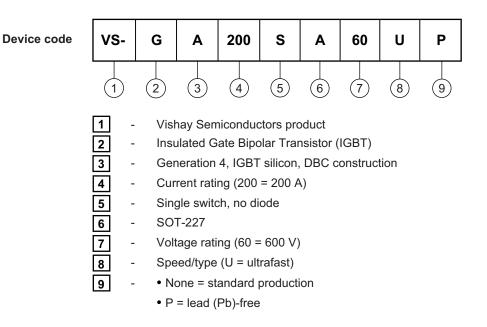
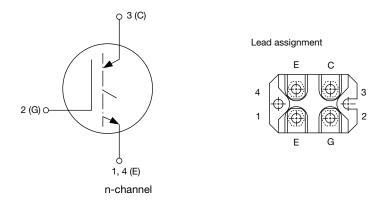
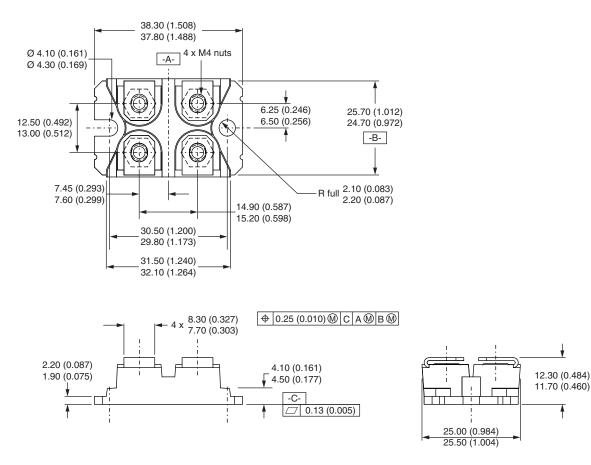



Fig. 14b - Switching Loss Waveforms


Vishay Semiconductors

ORDERING INFORMATION TABLE

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS				
Dimensions www.vishay.com/doc?95425				
Packaging information	www.vishay.com/doc?95423			

Vishay Semiconductors

SOT-227 Generation II

DIMENSIONS in millimeters (inches)

Note

• Controlling dimension: millimeter

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.