

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 250 A

PRODUCT SUMMARY						
V _{CES}	600 V					
V _{CE(on)} (typical) at 200 A, 25 °C	1.33 V					
I_C at $T_C = 90$ °C ⁽¹⁾	250 A					
Speed	DC to 1 kHz					
Package	SOT-227					
Circuit	Single switch no diode					

Note

FEATURES

· Standard: optimized for minimum saturation voltage and low speed

· Lowest conduction losses available

- Fully isolated package (2500 V_{AC})
- Very low internal inductance (5 nH typical)
- Industry standard outline
- · Designed and qualified for industrial level
- UL approved file E78996

• Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- · Designed for increased operating efficiency in power conversion: UPS, SMPS, TIG welding, induction heating
- Easy to assemble and parallel
- · Direct mounting to heatsink
- Plug-in compatible with other SOT-227 packages

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS		
Collector to emitter voltage	V _{CES}		600	V		
0	Ic (1)	T _C = 25 °C	400			
Continuous collector current	IC (·)	T _C = 90 °C	250			
Pulsed collector current	I _{CM}	Repetitive rating; V _{GE} = 20 V, pulse width limited by maximum junction temperature	400	A		
Clamped Inductive load current	I _{LM}	V_{CC} = 80 % (V_{CES}), V_{GE} = 20 V, L = 10 μ H, R_g = 2.0 Ω	400			
Gate to emitter voltage	V_{GE}		± 20	V		
Power dissipation	В	T _C = 25 °C	961	w		
	P _D	T _C = 90 °C	462	7 vv		
Isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V		

Note

(1) Maximum collector current admitted 100 A to do not exceed the maximum temperature of terminals

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Junction and storage temperature range	T _J , T _{Stg}		-40	=	150	°C	
Thermal resistance junction to case	R _{thJC}		-	=	0.13	°C/W	
Thermal resistance case to heatsink	R _{thCS}	Flat, greased surface	-	0.05	-	C/VV	
Weight			-	30	-	g	
Mounting torque		Torque to terminal	-	-	1.1 (9.7)	Nm (lbf.in)	
Mounting torque		Torque to heatsink	-	-	1.3 (11.5)	Nm (lbf.in)	
Case style		SC	DT-227	•		•	

⁽¹⁾ Maximum collector current admitted 100 A to do not exceed the maximum temperature of terminals

PARAMETER	SYMBOL	TEST CONDITI	ONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$		600	-	-	
Emitter to collector breakdown voltage	V _{(BR)ECS} (1)	$V_{GE} = 0 \text{ V}, I_{C} = 1.0 \text{ A}$		18	-	-	
		I _C = 100 A		-	1.10	1.3	v
		I _C = 200 A		-	1.33	1.66	
Callantanta anaittan allana	V _{CE(on)}	I _C = 100 A, T _J = 125 °C	V _{GE} = 15 V	-	1.02	-	
Collector to emitter voltage		I _C = 200 A, T _J = 125 °C		-	1.32	-	
		I _C = 100 A, T _J = 150 °C		-	1.02	-	
		I _C = 200 A, T _J = 150 °C		-	1.33	-	
Gate threshold voltage V _{GE(th)}		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$		3.0	4.5	6.0	
		$V_{CE} = V_{GE}, I_{C} = 250 \mu A, T_{J} = 125 ^{\circ}C$		-	3.1	-	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$	$V_{CE} = V_{GE}$, $I_{C} = 1$ mA, 25 °C to 125 °C		-	-12	-	mV/°C
		V _{GE} = 0 V, V _{CE} = 600 V		-	20	1000	μΑ
Collector to emitter leakage current	I _{CES}	V_{GE} = 0 V, V_{CE} = 600 V, T_{J} = 125 °C		-	0.2	-	mA
		V_{GE} = 0 V, V_{CE} = 600 V, T_{J} = 150 °C		-	0.6	10	IIIA
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V		-	-	± 250	nA

Notes

⁽¹⁾ Pulse width \leq 80 µs; duty factor \leq 0.1 %

PARAMETER	SYMBOL	unless otherwise specified) TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Q _q	i zar conzinenc		-	770	1200	
Gate-to-emitter charge (turn-on)	Q _{ge}	I _C = 100 A. V _{CC} = 600 V	I _C = 100 A, V _{CC} = 600 V, V _{GE} = 15 V		100	150	nC
Gate-to-collector charge (turn-on)	Q _{gc}		, al	-	260	380	1
Turn-on switching loss	E _{on}			_	0.55	_	
Turn-off switching loss	E _{off}	T _{.1} = 25 °C		-	25	-	mJ
Total switching loss	E _{tot}	I _C = 100 A		-	25.5	-	
Turn-on delay time	t _{d(on)}	$V_{CC} = 480 \text{ V}$ $V_{GE} = 15 \text{ V}$		_	267	-	- ns
Rise time	t _r	$R_g = 5.0 \Omega$		-	42	-	
Turn-off delay time	t _{d(off)}	L = 500 μH	Energy losses include tail and diode recovery. Diode used 60APH06	-	310	-	
Fall time	t _f			-	450	-	
Turn-on switching loss	E _{on}	T _J = 125 °C I _C = 100 A V _{CC} = 480 V V _{GE} = 15 V		-	0.67	-	mJ
Turn-off switching loss	E _{off}			-	43.0	-	
Total switching loss	E _{tot}			-	43.7	-	
Turn-on delay time	t _{d(on)}			-	275	-	
Rise time	t _r	$R_g = 5.0 \Omega$ L = 500 µH		-	50	-	1
Turn-off delay time	t _{d(off)}			-	350	-	ns -
Fall time	t _f			-	700	-	
Internal emitter inductance	LE	Between lead and center of die contact		-	5.0	-	nH
Input capacitance	C _{ies}	V _{GE} = 0 V , V _{CC} = 30 V, f = 1.0 MHz		-	16 250	-	
Output capacitance	C _{oes}			-	1040	-	рF
Reverse transfer capacitance	C _{res}			-	190	-	1

www.vishay.com

Vishay Semiconductors

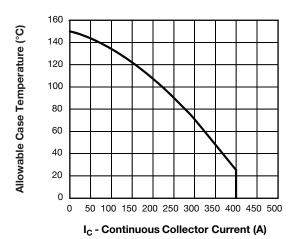


Fig. 1 - Maximum DC IGBT Collector Current vs. Case Temperature

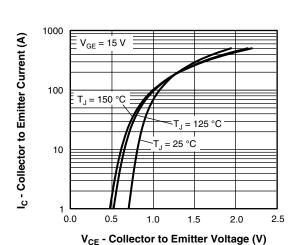


Fig. 2 - Typical Collector to Emitter Current Output Characteristics

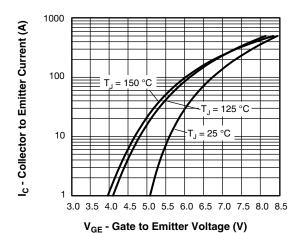


Fig. 3 - Typical IGBT Transfer Characteristics

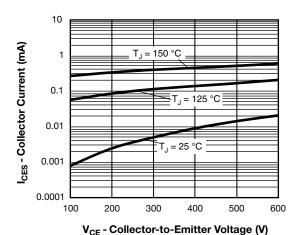


Fig. 4 - Typical IGBT Zero Gate Voltage Collector Current

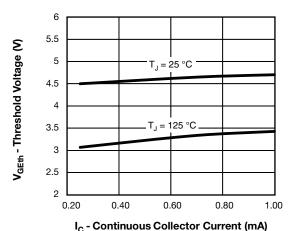


Fig. 5 - Typical IGBT Threshold Voltage

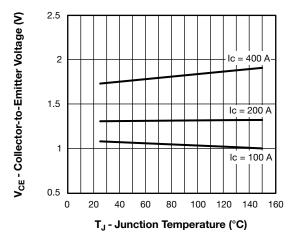


Fig. 6 - Typical IGBT Collector to Emitter Voltage vs. Junction Temperature, V_{GE} = 15 V

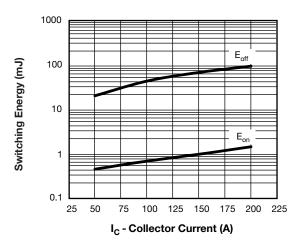


Fig. 7 - Typical IGBT Energy Losses vs. I_C, T_J = 125 °C, V_{CC} = 480 V, V_{GE} = 15 V, L = 500 μ H, R_g = 5 Ω , Diode used: 60APH06

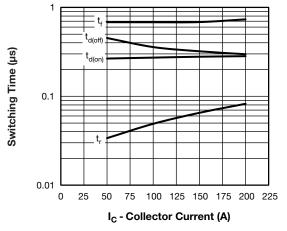


Fig. 8 - Typical IGBT Switching Time vs. I_C, T_J = 125 °C, V_{CC} = 480 V, V_{GE} = 15 V, L = 500 μ H, R_g = 5 Ω , Diode used: 60APH06

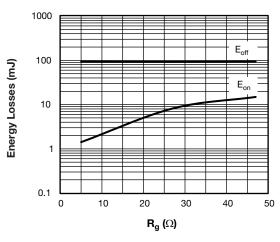


Fig. 9 - Typical IGBT Energy Losses vs. $R_g,$ T_J = 125 °C, I_C = 200 A, V_{CC} = 480 V, V_{GE} = 15 V, L = 500 $\mu H,$ Diode used: 60APH06

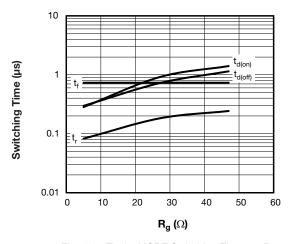


Fig. 10 - Typical IGBT Switching Time vs. $R_g,$ T_J = 125 °C, I_C = 200 A, V_{CC} = 480 V, V_{GE} = 15 V, L = 500 $\,$ µH, Diode used: 60APH06

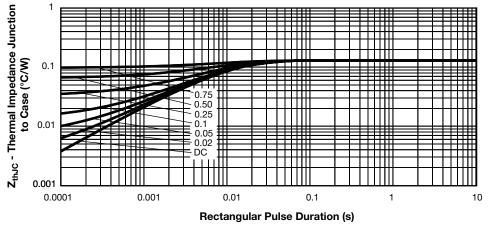


Fig. 11 - Maximum Thermal Impedance Zth,IC Characteristics

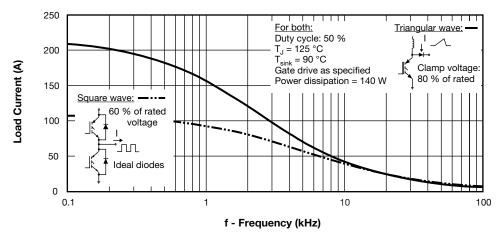


Fig. 12 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of Fundamental)

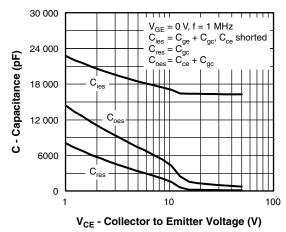


Fig. 13 - Typical Capacitance vs. Collector to Emitter Voltage

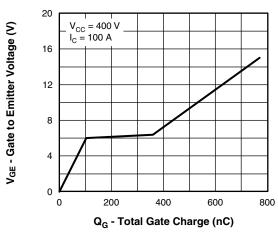


Fig. 14 - Typical Gate Charge vs. Gate to Emitter Voltage

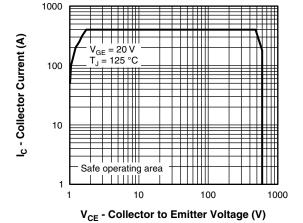
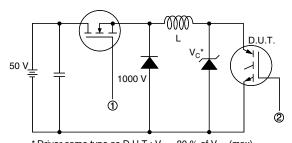



Fig. 15 - Turn-Off SOA

 * Driver same type as D.U.T.; V_{C} = 80 % of V_{CE} (max)

Note: Due to the 50 V power supply, pulse width and inductor will increase to obtain rated I_d

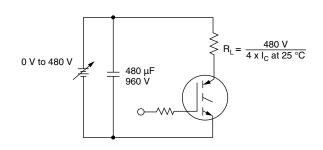


Fig. 16a - Clamped Inductive Load Test Circuit

Fig. 16b - Pulsed Collector Current Test Circuit

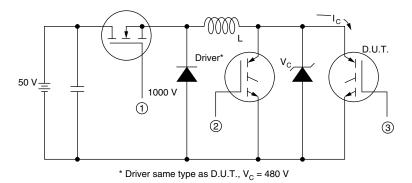


Fig. 17a - Switching Lost Test Circuit

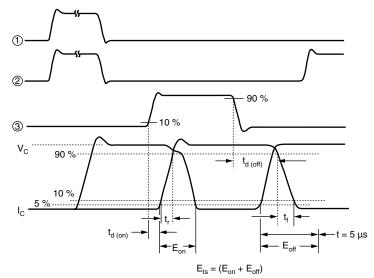
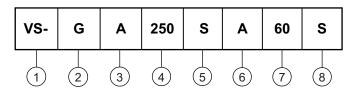
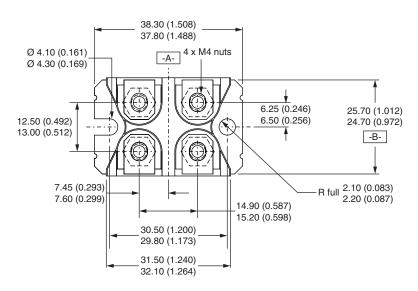



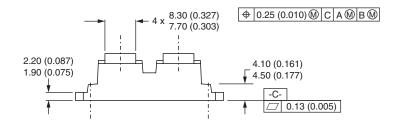
Fig. 17b - Switching Loss Waveforms

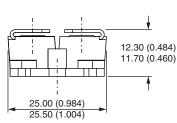
ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- Insulated Gate Bipolar Transistor (IGBT)
- 3 Gen 4, IGBT silicon
- Current rating (250 = 250 A)
- 5 Circuit configuration (S = single switch, without antiparallel diode)
- 6 Package indicator (A = SOT-227)
- 7 Voltage rating (60 = 600 V)
- Speed/type (S = standard speed)


CIRCUIT CONFIGURATION					
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Single switch, no antiparallel diode	S	2 (G) O Lead Assignment 1 N-channel			


LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95423				
Packaging information	www.vishay.com/doc?95425				



SOT-227 Generation II

DIMENSIONS in millimeters (inches)

Note

· Controlling dimension: millimeter

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.