imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

VS-GB90DA120U

Vishay Semiconductors

Insulated Gate Bipolar Transistor (Ultrafast IGBT), 90 A

PRODUCT SUMMARY						
V _{CES}	1200 V					
I _C DC	90 A at 90 °C					
V _{CE(on)} typical at 75 A, 25 °C	3.3 V					
Speed	8 kHz to 30 kHz					
Package	SOT-227					
Circuit	Single switch diode					

FEATURES

- NPT Gen 5 IGBT technology
- Square RBSOA
- HEXFRED[®] low Q_{rr}, low switching energy
- Positive V_{CE(on)} temperature coefficient
- · Fully isolated package
- Very low internal inductance (≤ 5 nH typical)
- · Industry standard outline
- UL approved file E78996
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- · Designed for increased operating efficiency in power conversion: UPS, SMPS, welding, induction heating
- Easy to assemble and parallel
- Direct mounting on heatsink
- · Plug-in compatible with other SOT-227 packages
- · Low EMI, requires less snubbing

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS		
Collector to emitter voltage	V _{CES}		1200	V		
Continuous collector current		$T_{\rm C} = 25 \ ^{\circ}{\rm C}$	149			
Continuous collector current	IC (.)	T _C = 90 °C	90			
Pulsed collector current	I _{CM}		200			
Clamped inductive load current	I _{LM}		200	A		
Diode continuous forward current		$T_{C} = 25 \ ^{\circ}C$	76			
Diode continuous forward current	I _F	T _C = 90 °C	46	1		
Gate to emitter voltage	V _{GE}		± 20	V		
Dower discipation ICDT	D	T _C = 25 °C	862			
Power dissipation, IGBT	PD	$T_{\rm C} = 90 \ ^{\circ}{\rm C}$	414	w		
		$T_{\rm C} = 25 \ ^{\circ}{\rm C}$	357	VV VV		
Power dissipation, diode	PD	T _C = 90 °C	171			
Isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V		

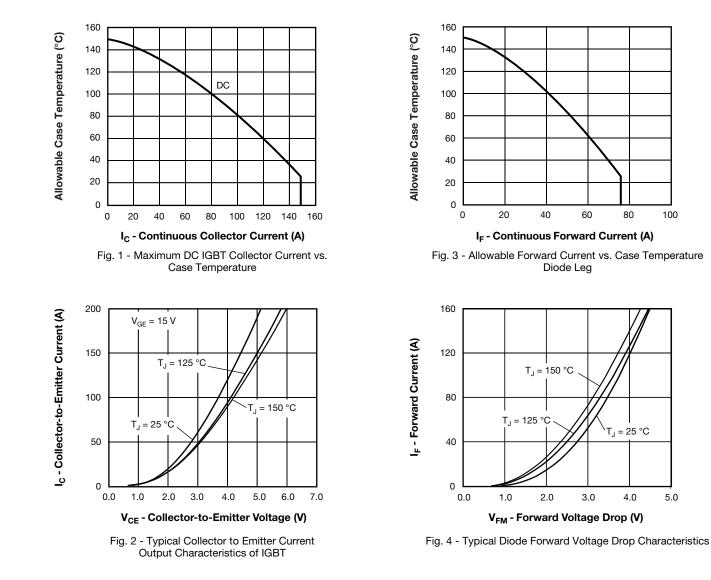
Note

(1) Maximum collector current admitted is 100 A, to do exceed the maximum temperature of terminals

1

www.vishay.com

Vishay Semiconductors


ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{BR(CES)}	V_{GE} = 0 V, I _C = 250 µA	1200	-	-		
		V _{GE} = 15 V, I _C = 75 A	-	3.3	3.8		
Collector to emitter voltage	V _{CE(on)}	V _{GE} = 15 V, I _C = 75 A, T _J = 125 °C	-	3.6	3.9	V	
		V _{GE} = 15 V, I _C = 75 A, T _J = 150 °C	-	3.7	-		
Cata threshold voltage	M	$V_{CE} = V_{GE}, I_C = 250 \ \mu A$	4	5	6		
Gate threshold voltage	V _{GE(th)}	V_{CE} = V_{GE} , I_C = 250 μ A, T_J = 125 °C	-	3.2	-		
Temperature coefficient of threshold voltage	$V_{GE(th)}/\Delta T_J$	V_{CE} = V_{GE} , I_C = 1 mA (25 °C to 125 °C)	-	-12	-	mV/°C	
		V _{GE} = 0 V, V _{CE} = 1200 V	-	7	250	μA	
Collector to emitter leakage current	I _{CES}	V_{GE} = 0 V, V_{CE} = 1200 V, T_{J} = 125 °C	-	1.4	10	mA	
		V_{GE} = 0 V, V_{CE} = 1200 V, T_{J} = 150 °C	-	6.5	20	- IIIA	
		$V_{GE} = 0 \text{ V}, I_F = 75 \text{ A}$	-	3.4	5.0		
Forward voltage drop, diode	V _{FM}	V_{GE} = 0 V, I _F = 75 A, T _J = 125 °C	-	3.2	5.2	V	
		$V_{GE} = 0 \text{ V}, \text{ I}_{F} = 75 \text{ A}, \text{ T}_{J} = 150 ^{\circ}\text{C}$	-	3.05	-		
Gate to emitter leakage current	I _{GES}	$V_{GE} = \pm 20 \text{ V}$	-	-	± 250	nA	

SWITCHING CHARACTERI	STICS (T _J	= 25 °C unless otherv	vise specified)				
PARAMETER	SYMBOL	TEST CONDIT	MIN.	TYP.	MAX.	UNITS	
Total gate charge (turn-on)	Qg			-	690	-	
Gate to emitter charge (turn-on)	Q _{ge}	I _C = 50 A, V _{CC} = 600 V, V _{GE} = 15 V		-	65	-	nC
Gate to collector charge (turn-on)	Q _{gc}		·	-	250	-	
Turn-on switching loss	E _{on}			-	1.2	-	
Turn-off switching loss	E _{off}			-	2.1	-	mJ
Total switching loss	E _{tot}	I _C = 75 A, V _{CC} = 600 V,		-	3.3	-	
Turn-on delay time	t _{d(on)}	$V_{GE} = 15 \text{ V}, \text{ R}_{a} = 5 \Omega,$		-	250	-	
Rise time	tr	L = 500 µH, T _J = 25 °C		-	38	-	- ns
Turn-off delay time	t _{d(off)}		Energy losses include tail and	-	280	-	
Fall time	t _f			-	90	-	
Turn-on switching loss	E _{on}		diode recovery Diode used HFA16PB120	-	1.7	-	mJ
Turn-off switching loss	E _{off}			-	4.08	-	
Total switching loss	E _{tot}	I_{C} = 75 A, V _{CC} = 600 V, V _{GE} = 15 V, R _g = 5 Ω,		-	5.78	-	
Turn-on delay time	t _{d(on)}			-	245	-	ns
Rise time	tr	L = 500 μH, Τ _J = 125 °C		-	48	-	
Turn-off delay time	t _{d(off)}			-	280	-	
Fall time	t _f			-	140	-	
Reverse bias safe operating area	RBSOA	T_J = 150 °C, I _C = 200 A, R _g = 22 Ω, V _{GE} = 15 V to 0 V, V _{CC} = 900 V, V _P = 1200 V, L = 500 μH			Fulls	quare	
Diode reverse recovery time	t _{rr}			-	140	-	ns
Diode peak reverse current	I _{rr}	I _F = 50 A, dI _F /dt = 200 A/µs, V _R = 200 V - 13				-	А
Diode recovery charge	Q _{rr}			-	860	-	nC
Diode reverse recovery time	t _{rr}			-	210	-	ns
Diode peak reverse current	I _{rr}	I _F = 50 A, dI _F /dt = 200 A/ T _{.1} = 125 °C	µs, V _R = 200 V,	-	19	-	А
Diode recovery charge	Q _{rr}	·J = 120 0	-	1880	-	nC	

Revision: 20-May-16 2 Document Number: 94722 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Junction and storage te	mperature range	T _J , T _{Stg}		-40	-	150	°C
Junction to case	IGBT	D		-	-	0.145	
Diode	R _{thJC}		-	-	0.35	°C/W	
Case to heatsink		R _{thCS}	Flat, greased surface	-	0.05	-	
Weight				-	30	-	g
Mounting torque			Torque to terminal	-	-	1.1 (9.7)	Nm (lbf.in)
Mounting torque	loidue		Torque to heatsink	-	-	1.3 (11.5)	Nm (lbf.in)
Case style			S	OT-227			

3

5.0

100

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

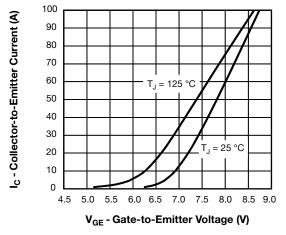


Fig. 5 - Typical IGBT Transfer Characteristics

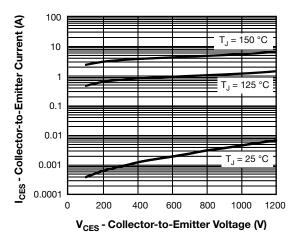


Fig. 6 - Typical IGBT Zero Gate Voltage Collector Current

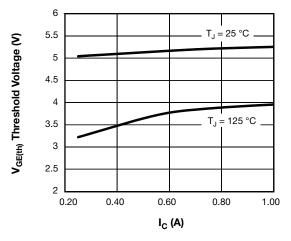


Fig. 7 - Typical IGBT Threshold Voltage

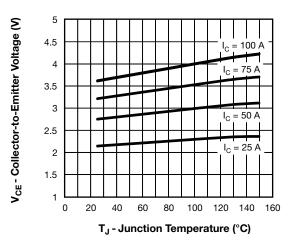


Fig. 8 - Typical IGBT Collector to Emitter Voltage vs. Junction Temperature, V_{GE} = 15 V

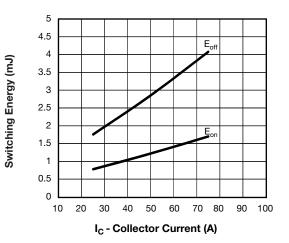
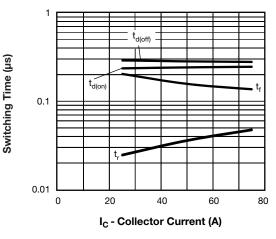
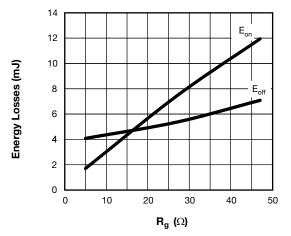
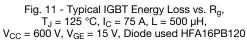


Fig. 9 - Typical IGBT Energy Losses vs. I_C T_J = 125 °C, L = 500 μ H, V_{CC} = 600 V, R_a = 5 Ω , V_{GE} = 15 V, Diode used HFA16PB120




Fig. 10 - Typical IGBT Switching Time vs. I_C T_J = 125 °C, L = 500 µH, V_{CC} = 600 V, R_g = 5 Ω , V_{GE} = 15 V, Diode used HFA16PB120


Revision: 20-May-16

4

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

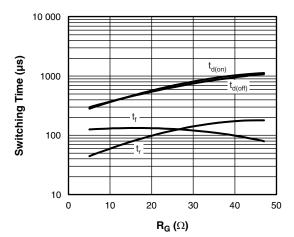


Fig. 12 - Typical IGBT Switching Time vs. R_g T_J = 125 °C, L = 500 $\mu H,$ V_{CC} = 600 V, R_g = 5 $\Omega,$ V_{GE} = 15 V

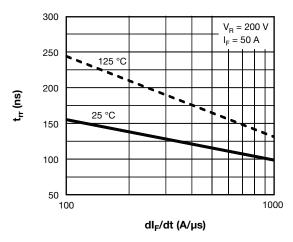
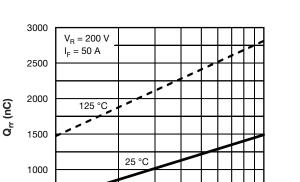



Fig. 13 - Typical t_{rr} Diode vs. dI_F/dt V_{RR} = 200 V, I_F = 50 A

500

100

Fig. 14 - Stored Charge vs. dl_F/dt of Diode

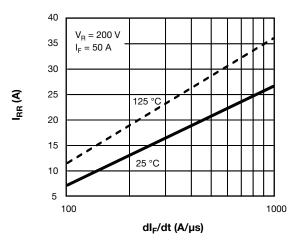
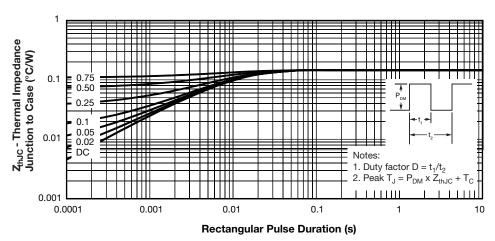


Fig. 15 - Typical Reverse Recovery Current vs. dl_F/dt of Diode

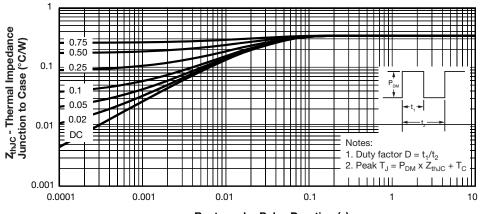
Revision: 20-May-16

5


For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1000

Vishay Semiconductors


VS-GB90DA120U

Vishay Semiconductors

www.vishay.com

Fig. 16 - Maximum Thermal Impedance ZthJC Characteristics (IGBT)

Rectangular Pulse Duration (s)

Fig. 17 - Maximum Thermal Impedance Z_{thJC} Characteristics (Diode)

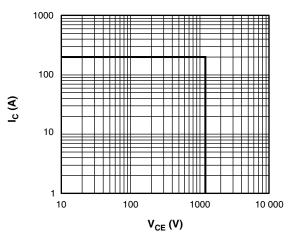
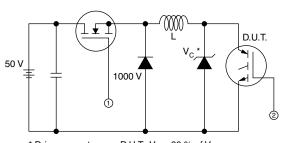



Fig. 18 - IGBT Reverse Bias SOA, TJ = 150 °C, V_{GE} = 15 V,

 Revision: 20-May-16
 6
 Document Number: 94722

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

SHA

* Driver same type as D.U.T.; V_C = 80 % of V_{ce(max.)} * Note: Due to the 50 V power supply, pulse width and inductor will increase to obtain Id

Fig. 19a - Clamped Inductive Load Test Circuit

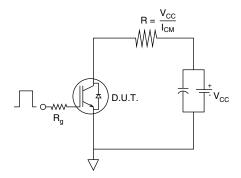


Fig. 19b - Pulsed Collector Current Test Circuit

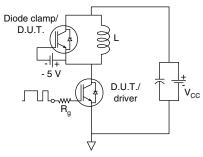


Fig. 20a - Switching Loss Test Circuit

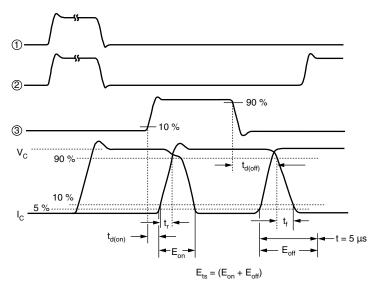
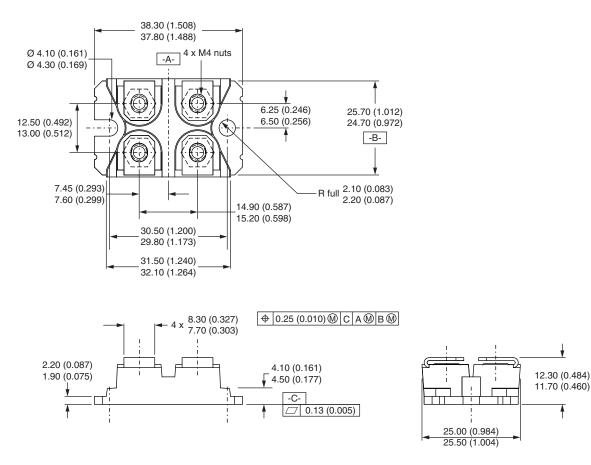


Fig. 20b - Switching Loss Waveforms Test Circuit

VISHAY

ORDERING INFORMATION TABLE

Device code	VS-	G	В	90	D	Α	120	U
		2	3	4	5	6	7	8
	1	· Visl	nay Sen	niconduo	ctors pro	oduct		
	2	2 - Insulated Gate Bipolar Transistor (IGBT)						
	3	• В =	IGBT G	Generatio	on 5			
	4	- Cur	rent rati	ng (90 =	= 90 A)			
	5	- Circ	uit conf	iguratio	n (D = S	ingle sv	vitch wit	th antipa
	6	Pac	kage in	dicator (A = SO	T-227)		
	7	Vol	age rati	ing (120	= 1200	V)		
	8	- Spe	ed/type	(U = UI	trafast I	GBT)		


CIRCUIT CONFI	GURATION				
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Single switch with antiparallel diode	D	2 (G) O Lead Assignment 1,4 (E)			

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95423				
Packaging information	www.vishay.com/doc?95425				

SOT-227 Generation II

DIMENSIONS in millimeters (inches)

Note

• Controlling dimension: millimeter

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.