

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Insulated Gate Bipolar Transistor (Trench IGBT), 100 A

SOT-227

PRODUCT SUMMARY					
V _{CES}	1200 V				
I _C DC	100 A at 119 °C				
V _{CE(on)} typical at 100 A, 25 °C	1.73 V				

FEATURES

 Trench IGBT technology with positive temperature coefficient

RoHS

- Square RBSOA
- 10 µs short circuit capability
- HEXFRED® antiparallel diodes with ultrasoft reverse recovery
- T_J maximum = 150 °C
- Fully isolated package
- Very low internal inductance (≤ 5 nH typical)
- Industry standard outline
- UL approved file E78996
- Compliant to RoHS directive 2002/95/EC

BENEFITS

- Designed for increased operating efficiency in power conversion: UPS, SMPS, welding, induction heating
- Easy to assemble and parallel
- · Direct mounting to heatsink
- Plug-in compatible with other SOT-227 packages
- Speed 4 kHz to 30 kHz
- Very low V_{CE(on)}
- Low EMI, requires less snubbing

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		1200	V	
Continuous collector current	I _C ⁽¹⁾	T _C = 25 °C	258		
Continuous collector current	IC ('')	T _C = 80 °C	174		
Pulsed collector current	I _{CM}		450		
Clamped inductive load current	I _{LM}		450	А	
Diode continuous forward current	1	T _C = 25 °C	50]	
	IF	T _C = 80 °C	34		
Peak diode forward current	I _{FSM}		180		
Gate to emitter voltage	V_{GE}		± 20	V	
Dawer dissination ICDT	В	T _C = 25 °C 893			
Power dissipation, IGBT	P _D	T _C = 119 °C	221	w	
De la contractiva de la de	В	T _C = 25 °C	176] vv	
Power dissipation, diode	P _D	T _C = 119 °C	44		
Isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V	

Note

⁽¹⁾ Maximum continuous collector current must be limited to 100 A to do not exceed the maximum temperature of terminals

GT100DA120U

Vishay Semiconductors

Insulated Gate Bipolar Transistor (Trench IGBT), 100 A

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{BR(CES)}	$V_{GE} = 0 \text{ V}, I_C = 250 \mu\text{A}$	1200	-	-		
Collector to emitter voltage	V	V _{GE} = 15 V, I _C = 100 A	-	1.73	2.1] _v	
Collector to emitter voltage	V _{CE(on)}	V_{GE} = 15 V, I_C = 100 A, T_J = 125 °C	-	1.98	2.2	V	
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 7.5 \text{ mA}$	4.9	5.9	7.9		
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$	V _{CE} = V _{GE} , I _C = 1 mA (25 °C to 125 °C)	-	- 17.6	-	mV/°C	
Collector to emitter leakage current	1	V _{GE} = 0 V, V _{CE} = 1200 V	-	0.6	100	μΑ	
Collector to emitter leakage current I _{CES}		$V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$	-	0.6	10	mA	
Forward valtage drap	V	$I_F = 40 \text{ A}, V_{GE} = 0 \text{ V}$	-	2.81	3.3	V	
Forward voltage drop	V_{FM}	$I_F = 40 \text{ A}, V_{GE} = 0 \text{ V}, T_J = 125 \text{ °C}$	-	3.07	3.4	V	
Gate to emitter leakage current	I _{GES}	$V_{GE} = \pm 20 \text{ V}$	-	-	± 200	nA	

SWITCHING CHARACTERI PARAMETER	SYMBOL	TEST CONDIT	MIN.	TYP.	MAX.	UNITS	
Turn-on switching loss	E _{on}	$I_C = 100 \text{ A}, V_{CC} = 720 \text{ V},$		-	5.2	-	mJ
Turn-off switching loss	E _{off}	$V_{GE} = 15 \text{ V}, R_g = 5 \Omega,$		-	7.1	-	
Total switching loss	E _{tot}	$L = 500 \mu H, T_J = 25 °C$		-	12.3	-	
Turn-on switching loss	E _{on}		Energy losses include tail and diode recovery (see fig. 20)	-	6.1	-	
Turn-off switching loss	E _{off}			-	9.8	-	
Total switching loss	E _{tot}	$I_C = 100 \text{ A}, V_{CC} = 720 \text{ V},$		-	15.9	-	
Turn-on delay time	t _{d(on)}	$V_{GE} = 15 \text{ V}, R_g = 5 \Omega,$		-	350	-	ns ns
Rise time	t _r	L = 500 μH, T _J = 125 °C		-	75	-	
Turn-off delay time	t _{d(off)}			-	374	-	
Fall time	t _f			-	493	-	
Reverse bias safe operating area	RBSOA	T_J = 150 °C, I_C = 450 A, R_g = 22 Ω , V_{GE} = 15 V to 0 V, V_{CC} = 900 V, V_P = 1200 V, L = 500 μ H		Fullsquare			
Diode reverse recovery time	t _{rr}	$I_F = 50 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}, V_{rr} = 400 \text{ V}$		-	164	194	ns
Diode peak reverse current	I _{rr}			-	12	15	Α
Diode recovery charge	Q _{rr}			-	994	1455	nC
Diode reverse recovery time	t _{rr}			-	230	273	ns
Diode peak reverse current	I _{rr}	$I_F = 50 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s},$ $V_{rr} = 400 \text{ V}, T_{.l} = 125 \text{ °C}$		-	16.5	20	Α
Diode recovery charge	Q _{rr}	V _H = 100 V, V _J = 120 °C	-	1864	2730	nC	
Short circuit safe operating area	SCSOA	$T_J = 150 ^{\circ}\text{C}, R_g = 22 \Omega,$ $V_{GE} = 15 \text{V to 0 V}, V_{CC} = 900 \text{V},$ $V_p = 1200 \text{V}$			10		μs

Insulated Gate Bipolar Transistor (Trench IGBT), 100 A

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}	- 40	-	150	°C	
Junction to case	R _{thJC}	-	-	0.14		
Diode		-	-	0.71	°C/W	
Case to sink per module	R _{thCS}	-	0.1	-		
Mounting torque, 6-32 or M3 screw		-	-	1.3	Nm	
Weight		-	30	-	g	

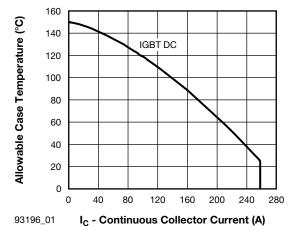


Fig. 1 - Maximum DC IGBT Collector Current vs. Case Temperature

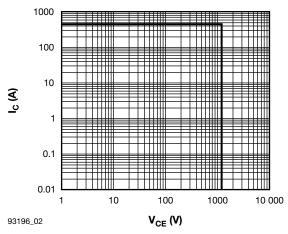


Fig. 2 - IGBT Reverse Bias SOA $T_J = 150$ °C, $V_{GE} = 15$ V

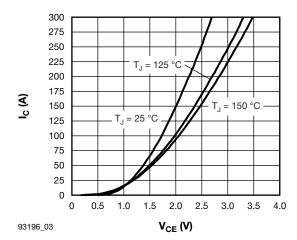


Fig. 3 - Typical IGBT Collector Current Characteristics $V_{GE} = 15 \text{ V}$

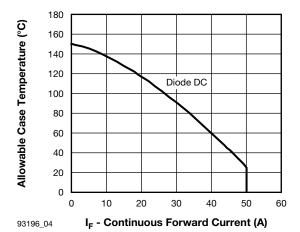


Fig. 4 - Maximum DC Forward Current vs. Case Temperature

Insulated Gate Bipolar Transistor (Trench IGBT), 100 A

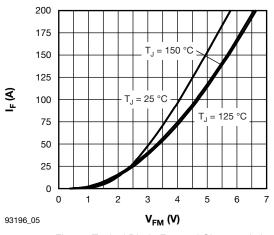


Fig. 5 - Typical Diode Forward Characteristics

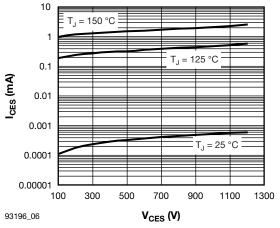


Fig. 6 - Typical IGBT Zero Gate Voltage Collector Current

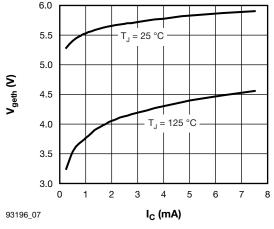


Fig. 7 - Typical IGBT Threshold Voltage

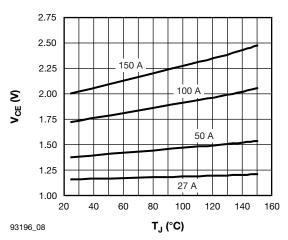


Fig. 8 - Typical IGBT Collector to Emitter Voltage vs. Junction Temperature, $V_{GE} = 15 \text{ V}$

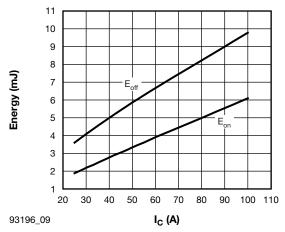


Fig. 9 - Typical IGBT Energy Loss vs. I_C T_J = 125 °C, L = 500 μ H, V_{CC} = 720 V, R_g = 5 Ω , V_{GE} = 15 V

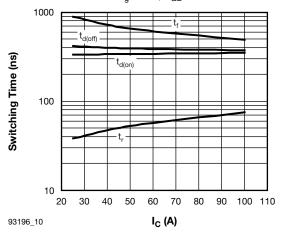


Fig. 10 - Typical IGBT Switching Time vs. I_C T_J = 125 °C, L = 500 μ H, V_{CC} = 720 V, R_g = 5 Ω , V_{GE} = 15 V

Insulated Gate Bipolar Transistor (Trench IGBT), 100 A

Vishay Semiconductors

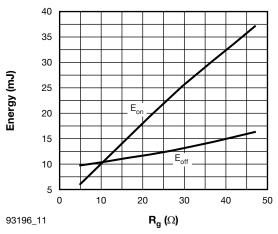


Fig. 11 - Typical IGBT Energy Loss vs. R_g T_J = 125 °C, I_C = 100 A, L = 500 μ H, V_{CC} = 720 V, V_{GE} = 15 V

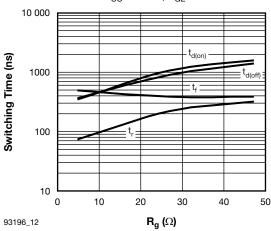


Fig. 12 - Typical IGBT Switching Time vs. R_g T_J = 125 °C, L = 500 $\mu H,~V_{CC}$ = 720 V, I_C = 100 A, V_{GE} = 15 V

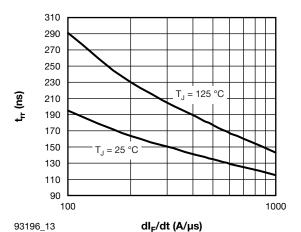


Fig. 13 - Typical t_{rr} Diode vs. dI_F/dt $V_{rr} = 400 \text{ V}$, $I_F = 50 \text{ A}$

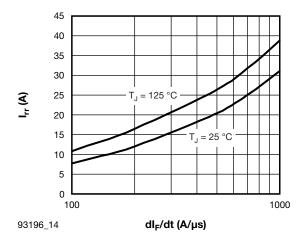


Fig. 14 - Typical I $_{\rm rr}$ Diode vs. dI $_{\rm F}$ /dt V $_{\rm rr}$ = 400 V, I $_{\rm F}$ = 50 A

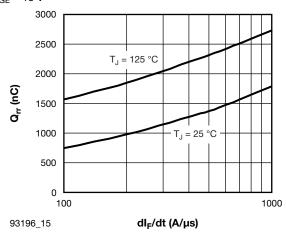


Fig. 15 - Typical Q_{rr} Diode vs. dI_F/dt $V_{rr} = 400 \text{ V}, I_F = 50 \text{ A}$

Insulated Gate Bipolar Transistor (Trench IGBT), 100 A

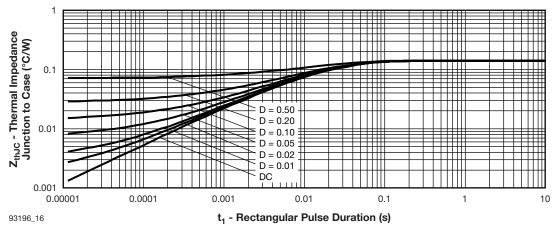


Fig. 16 - Maximum Thermal Impedance Z_{thJC} Characteristics (IGBT)

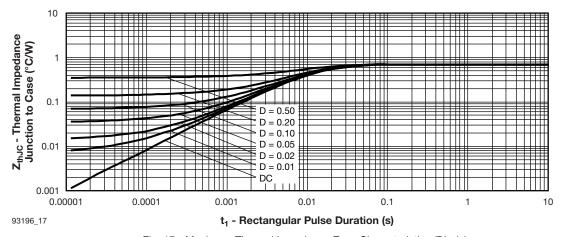
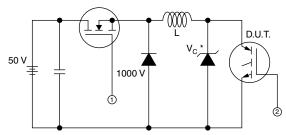



Fig. 17 - Maximum Thermal Impedance Z_{thJC} Characteristics (Diode)

Insulated Gate Bipolar Transistor (Trench IGBT), 100 A

Vishay Semiconductors

- * Driver same type as D.U.T.; V_C = 80 % of $V_{ce(max)}$ * Note: Due to the 50 V power supply, pulse width and inductor will increase to obtain Id

Fig. 18a - Clamped Inductive Load Test Circuit

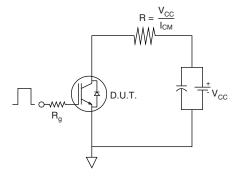


Fig. 18b - Pulsed Collector Current Test Circuit

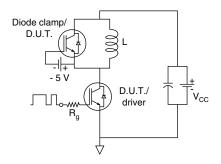


Fig. 19a - Switching Loss Test Circuit

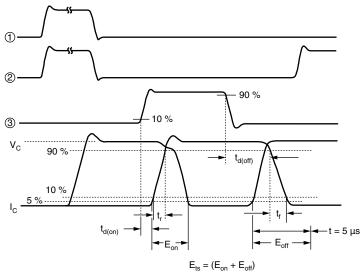


Fig. 19b - Switching Loss Waveforms Test Circuit

Insulated Gate Bipolar Transistor (Trench IGBT), 100 A

ORDERING INFORMATION TABLE

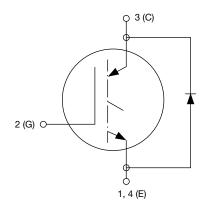
Device code

G	Т	100	D	Α	120	J
1	2	3	4	5	6	7

Insulated Gate Bipolar Transistor (IGBT)

T = Trench IGBT technology

3 - Current rating (100 = 100 A)


- Circuit configuration (D = Single switch with antiparallel diode)

5 - Package indicator (A = SOT-227)

- Voltage rating (120 = 1200 V)

Speed/type (U = Ultrafast)

CIRCUIT CONFIGURATION



LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95036</u>				
Packaging information <u>www.vishay.com/doc?95037</u>				

SOT-227

DIMENSIONS in millimeters (inches)

Notes

- Dimensioning and tolerancing per ANSI Y14.5M-1982
- · Controlling dimension: millimeter

Document Number: 95036 Revision: 28-Aug-07

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000