

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

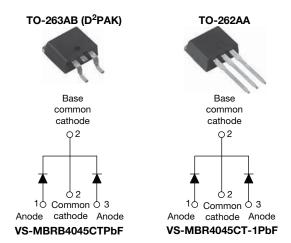
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

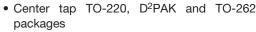
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

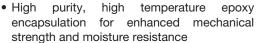
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Vishay Semiconductors


High Performance Schottky Rectifier, 2 x 20 A



PRODUCT SUMMARY	
Package	TO-263AB (D ² PAK), TO-262AA
I _{F(AV)}	40 A
V_{R}	45 V
V _F at I _F	0.58 V
I _{RM} max.	95 mA at 125 °C
T _J max.	150 °C
Diode variation	Common cathode
E _{AS}	20 mJ

FEATURES

- 150 °C T_J operation
- Low forward voltage drop
- High frequency operation

- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	Rectangular waveform (per device)	40	^		
I _{FRM}	T _C = 118 °C (per leg)	40	A		
V_{RRM}		45	V		
I _{FSM}	t _p = 5 μs sine	900	Α		
V _F	20 A _{pk} , T _J = 125 °C	0.58	V		
TJ	Range	-65 to +150	°C		

VOLTAGE RATINGS					
PARAMETER	SYMBOL	VS-MBRB4045CTPbF VS-MBR4045CT-1PbF	UNITS		
Maximum DC reverse voltage	V_{R}	45	V		
Maximum working peak reverse voltage	V_{RWM}	45	V		

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDI	TIONS	VALUES	UNITS
Maximum average per leg		T _C = 118 °C, rated V _R		20	
forward current per device	I _{F(AV)}			40	
Peak repetitive forward current per leg	I _{FRM}	Rated V _R , square wave, 20 kHz, T _C = 118 °C		40	А
Maximum peak one cycle non-repetitive	l=	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	900	
peak surge current per leg	I _{FSM}	10 ms sine or 6 ms rect. pulse	V _{RRM} applied	210	
Non-repetitive avalanche energy per leg	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 3 \text{A}, L = 4.4 \text{mH}$		20	mJ
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero Frequency limited by T _J maximu		3	А

Revision: 15-Jul-14 Document Number: 94311

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS
		20 A	T _{.1} = 25 °C	0.60	V
Maximum famuard valtage drep	V (1)	40 A	1J=25 C	0.78	
Maximum forward voltage drop	V _{FM} ⁽¹⁾	20 A	T 405.00	0.58	
		40 A	T _J = 125 °C	0.75	
	I _{RM} ⁽¹⁾	T _J = 25 °C		1	mA
Maximum instantaneous reverse current		T _J = 100 °C	Rated DC voltage	50	
reverse current		T _J = 125 °C		95	
Maximum junction capacitance	C _T	V _R = 5 V _{DC} (test signal range	ge 100 kHz to 1 MHz), 25 °C	900	pF
Typical series inductance	L _S	Measured from top of terminal to mounting plane		8.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs

Note

 $^{^{(1)}}$ Pulse width < 300 μ s, duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	YMBOL TEST CONDITIONS		UNITS	
Maximum junction temperature range	TJ		-65 to +150	°C	
Maximum storage temperature range	T _{Stg}		-65 to +175	C	
Maximum thermal resistance, junction to case per leg	R _{thJC}	DC operation	1.5		
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth and greased (Only for TO-220)	0.50	°C/W	
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation (For D ² PAK and TO-262)	50		
Approximate weight			2	g	
Approximate weight			0.07	OZ.	
Marintin a tourne		Name to be size at a state of the same of a	6 (5)	kgf · cm	
Mounting torque maximum		Non-lubricated threads	12 (10)	(lbf \cdot in)	
		Case style D ² PAK	MBRB4	045CT	
Marking device		Case style TO-262	MBR40	45CT-1	

www.vishay.com

Vishay Semiconductors

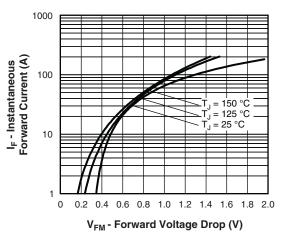


Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

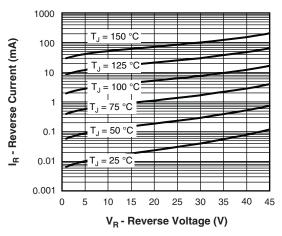


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

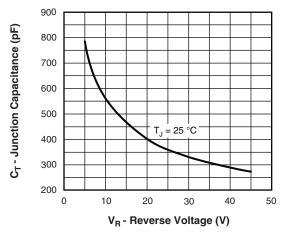


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

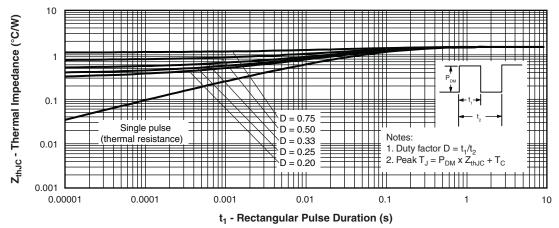


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

www.vishay.com

Vishay Semiconductors

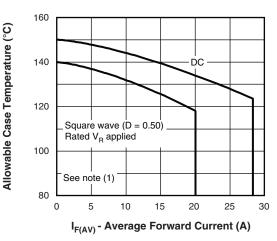


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

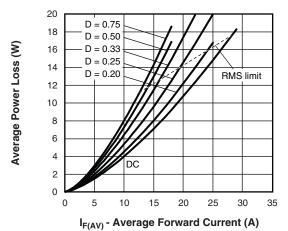


Fig. 6 - Forward Power Loss Characteristics

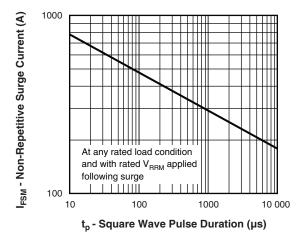
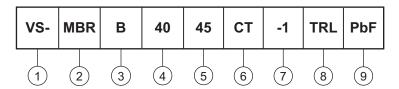


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)


Note

 $\begin{array}{ll} \text{(1)} & \text{Formula used: } T_C = T_J - (\text{Pd} + \text{Pd}_{\text{REV}}) \times R_{\text{thJC}}; \\ \text{Pd} = & \text{forward power loss} = I_{\text{F(AV)}} \times V_{\text{FM}} \text{ at } (I_{\text{F(AV)}}/D) \text{ (see fig. 6)}; \\ \text{Pd}_{\text{REV}} = & \text{inverse power loss} = V_{\text{R1}} \times I_{\text{R}} \text{ (1 - D)}; I_{\text{R}} \text{ at } V_{\text{R1}} = \text{rated } V_{\text{R}} \\ \end{array}$

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Essential part number

• None = TO-262 7 = -1

- Current rating (40 = 40 A)

5 - Voltage rating (45 = 45 V)

CT = essential part number

- None = D^2PAK 3 = B

• -1 = TO-262 **3** None

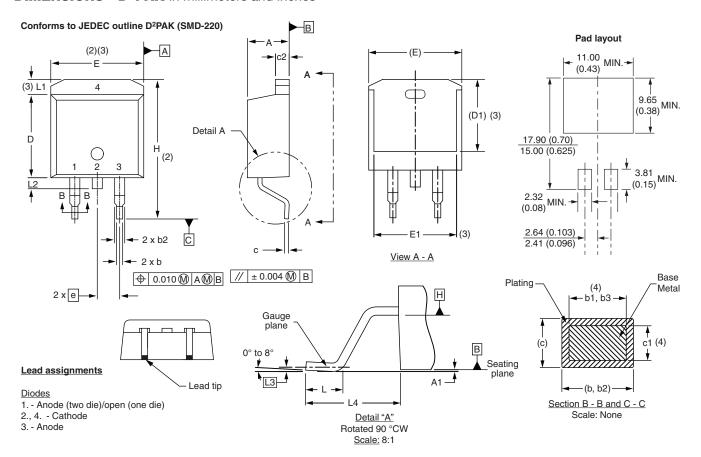
None = tube (50 pieces)

• TRL = tape and reel (left oriented - for D²PAK only)

• TRR = tape and reel (right oriented - for D²PAK only)

9 - • PbF = lead (Pb)-free (for TO-262 and D²PAK tube)

• P = lead (Pb)-free (for D²PAK TRR and TRL)


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95014			
Part marking information	www.vishay.com/doc?95008			
Packaging information	www.vishay.com/doc?95032			
SPICE model	www.vishay.com/doc?95296			

Vishay Semiconductors

D²**PAK**, **TO**-262

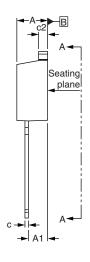
DIMENSIONS - D²PAK in millimeters and inches

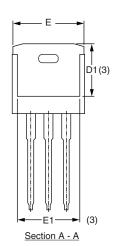
SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STIMBUL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

Notes

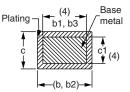
- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- $^{(3)}\,$ Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch


(7) Outline conforms to JEDEC outline TO-263AB


D²PAK, TO-262

DIMENSIONS - TO-262 in millimeters and inches

⊕ 0.010 M AM B


Lead assignments

Diodes

1. - Anode (two die)/open (one die) 2., 4. - Cathode

3. - Anode

Section B - B and C - C Scale: None

SYMBOL	MILLIM	ETERS	INC	INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
А	4.06	4.83	0.160	0.190		
A1	2.03	3.02	0.080	0.119		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
С	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	
D1	6.86	8.00	0.270	0.315	3	
Е	9.65	10.67	0.380	0.420	2, 3	
E1	7.90	8.80	0.311	0.346	3	
е	2.54 BSC		0.100) BSC		
L	13.46	14.10	0.530	0.555		
L1	-	1.65	-	0.065	3	
L2	3.56	3.71	0.140	0.146		

Notes

- $^{(1)}$ Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches

(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.