

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

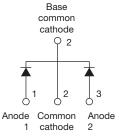
Contact us

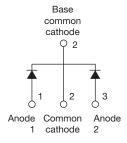
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Vishay Semiconductors


Ultrafast Rectifier, 2 x 5 A FRED Pt®



TO-263AB (D²PAK)

TO-262AA

VS-MURB1020CTPbF

VS-MURB1020CT-1PbF

PRODUCT SUMMARY	
Package	TO-263AB (D ² PAK), TO-262AA
I _{F(AV)}	2 x 5 A
V _R	200 V
V _F at I _F	0.87 V
t _{rr}	25 ns
T _J max.	175 °C
Diode variation	Common cathode

FEATURES

- · Ultrafast recovery time
- Low forward voltage drop
- · Low leakage current
- 175 °C operating junction temperature
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C

RoHS HALOGEN FREE

DESCRIPTION / APPLICATIONS

MUR.. series are the state of the art ultrafast recovery rectifiers specifically designed with optimized performance of forward voltage drop and ultrafast recovery time.

The planar structure and the platinum doped life time control, guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in the output rectification stage of SMPS, UPS, DC/DC converters as well as freewheeling diode in low voltage inverters and chopper motor drives.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS		
Peak repetitive reverse voltage	V_{RRM}		200	V		
Average rectified forward current	per leg		5			
Average rectified forward current total d	device I _{F(AV)}	Rated V _R , T _C = 149 °C	10	Α		
Non-repetitive peak surge current per leg	I _{FSM}		50	A		
Peak repetitive forward current per leg	I _{FM}	Rated V _R , square wave, 20 kHz, T _C = 149 °C	10			
Operating junction and storage temperatur	es T _J , T _{Stg}		-65 to +175	°C		

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V _{BR} , V _R	Ι _R = 100 μΑ	200	-	-	
Forward voltage	V _F	I _F = 5 A, T _J = 25 °C	-	0.99	1.08	V
		I _F = 5 A, T _J = 125 °C	1	0.87	0.99	V
i orward voitage		$I_F = 10 \text{ A}, T_J = 25 ^{\circ}\text{C}$	ı	1.12	1.25	
		I _F = 10 A, T _J = 125 °C	-	1.02	1.20	
Doverno logicado ourrent		$V_R = V_R$ rated	-	-	10	
Reverse leakage current	I _R	$T_J = 150 ^{\circ}\text{C}, V_R = V_R \text{rated}$	-	-	250	μA
Junction capacitance	C _T	V _R = 200 V	-	8	-	pF
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8.0	-	nH

Reverse recovery charge

 Q_{rr}

 $T_J = 125$ °C

VS-MURB1020CTPbF, VS-MURB1020CT-1PbF

Vishay Semiconductors

76

nC

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS
P		$I_F = 1.0 \text{ A}, dI_F/dt = 5$	$I_F = 1.0 \text{ A}, dI_F/dt = 50 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	35	
		$I_F = 0.5 \text{ A}, I_R = 1.0 \text{ A}, I_{REC} = 0.25 \text{ V}$		-	-	25] '
Reverse recovery time	t _{rr}	T _J = 25 °C	$I_F = 5 \text{ A}$ $dI_F/dt = 200 \text{ A/}\mu\text{s}$ $V_B = 160 \text{ V}$	-	24	-	ns -
		T _J = 125 °C		-	35	-	
Peak recovery current	1	T _J = 25 °C		-	3.3	-	Δ.
	I _{RRM}	T _J = 125 °C		-	5.0	-	A
D	_	T _J = 25 °C		-	33	-	-0

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	175	°C
Thermal resistance, junction to case per leg	R_{thJC}		-	-	5	
Thermal resistance, junction to ambient per leg	R _{thJA}		-	-	50	°C/W
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-	
Waight			-	2.0	-	g
Weight			-	0.07	-	OZ.
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)
Marking dayioo		Case style TO-263AB (D ² PAK) MURB1020CT		1020CT		
Marking device		Case style TO-262	MURB1020CT-1			

Vishay Semiconductors

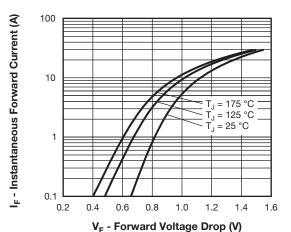


Fig. 1 - Typical Forward Voltage Drop Characteristics

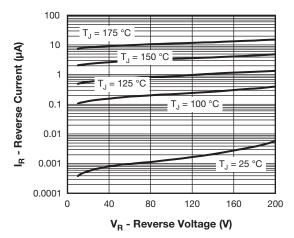


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

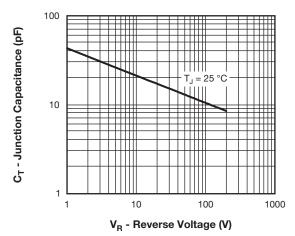


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

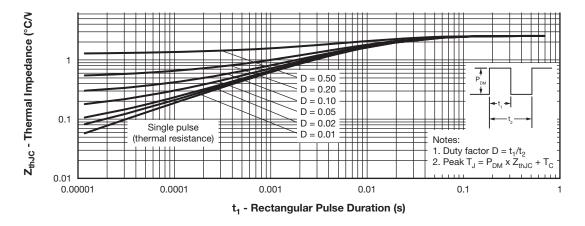


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

V_R = 160 V

50

30

20

40

20

0

100

t_{rr} (ns)

www.vishay.com

Vishay Semiconductors

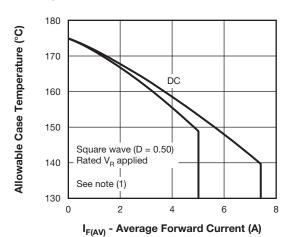


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

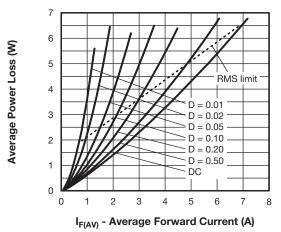


Fig. 6 - Forward Power Loss Characteristics

T_J = $125 \, ^{\circ}\text{C}$ T_J = $25 \, ^{\circ}\text{C}$ 10 100 1000 dI_F/dt (A/ μ s) Fig. 7 - Typical Reverse Recovery Time vs. dI_F/dt 160 140 120 I_F = $10 \, \text{A}$ I_F = $5 \, \text{A}$ 100 80 60

 dI_F/dt (A/ μ s) Fig. 8 - Typical Stored Charge vs. dI_F/dt

V_R = 160 V

T_J = 125 °C

1000

 $T_J = 25 \, ^{\circ}C$

Note

 $\begin{array}{ll} \text{(1)} & \text{Formula used: } T_C = T_J - (Pd + Pd_{REV}) \times R_{th,JC}; \\ Pd = \text{Forward power loss} = I_{F(AV)} \times V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 6)}; \\ Pd_{REV} = \text{Inverse power loss} = V_{R1} \times I_R \text{ (1 - D); } I_R \text{ at } V_{R1} = \text{Rated } V_R \\ \end{array}$

Vishay Semiconductors

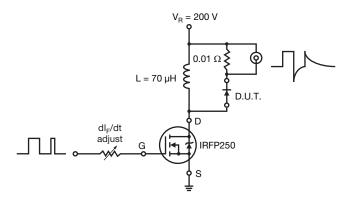
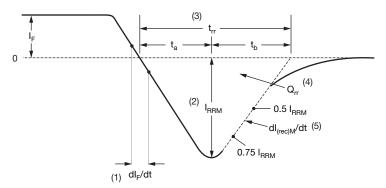



Fig. 9 - Reverse Recovery Parameter Test Circuit

- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) $\rm t_{rr}$ reverse recovery time measured from zero crossing point of negative going $\rm I_F$ to point where a line passing through 0.75 $\rm I_{RRM}$ and 0.50 $\rm I_{RRM}$ extrapolated to zero current.
- (4) $\mathbf{Q}_{\rm rr}$ area under curve defined by $\mathbf{t}_{\rm rr}$ and $\mathbf{I}_{\rm RRM}$

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

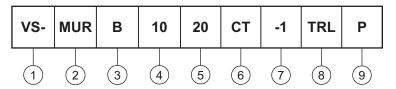

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 10 - Reverse Recovery Waveform and Definitions

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

Vishay Semiconductors product

Ultrafast MUR series

3 4 5 6 $B = D^2PAK/TO-262$

Current rating (10 = 10 A)

Voltage rating (20 = 200 V)

CT = center tap (dual)

• None = D²PAK

• -1 = TO-262

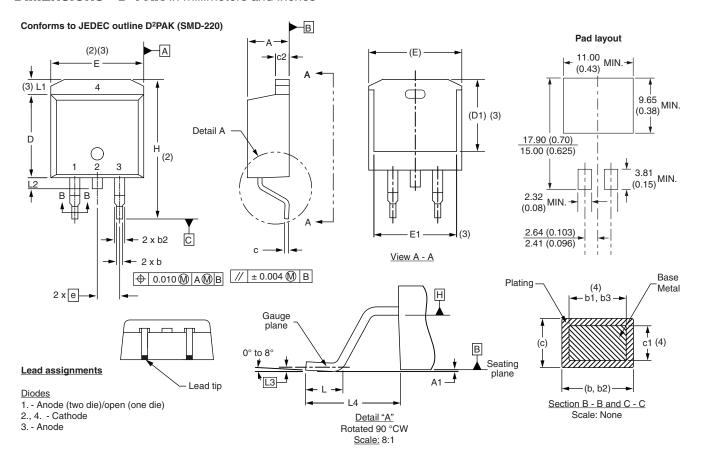
8 • None = tube (50 pieces)

• TRL = tape and reel (left oriented, for D²PAK package)

• TRR = tape and reel (right oriented, for D²PAK package)

9 • PbF = lead (Pb)-free (for TO-262 and D²PAK tube)

• P = lead (Pb)-free (for D²PAK TRR and TRL)


LINKS TO RELATED DOCUMENTS					
Dimensions <u>www.vishay.com/doc?95014</u>					
Part marking information	www.vishay.com/doc?95008				
Packaging information	www.vishay.com/doc?95032				

Vishay Semiconductors

D²**PAK**, **TO**-262

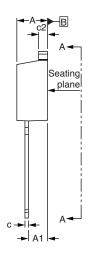
DIMENSIONS - D²PAK in millimeters and inches

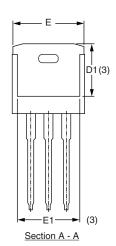
SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

SYMBOL	MILLIN	MILLIMETERS		INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
D1	6.86	8.00	0.270	0.315	3	
E	9.65	10.67	0.380	0.420	2, 3	
E1	7.90	8.80	0.311	0.346	3	
е	2.54 BSC		0.100 BSC			
Н	14.61	15.88	0.575	0.625		
L	1.78	2.79	0.070	0.110		
L1	-	1.65	-	0.066	3	
L2	1.27	1.78	0.050	0.070		
L3	0.25 BSC		0.010	BSC		
L4	4.78	5.28	0.188	0.208		

Notes

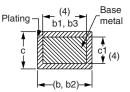
- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- $^{(3)}\,$ Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch


(7) Outline conforms to JEDEC outline TO-263AB


D²PAK, TO-262

DIMENSIONS - TO-262 in millimeters and inches

⊕ 0.010 M AM B


Lead assignments

Diodes

1. - Anode (two die)/open (one die) 2., 4. - Cathode

3. - Anode

Section B - B and C - C Scale: None

SYMBOL	MILLIMETERS		INC	INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
А	4.06	4.83	0.160	0.190		
A1	2.03	3.02	0.080	0.119		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
С	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	
D1	6.86	8.00	0.270	0.315	3	
Е	9.65	10.67	0.380	0.420	2, 3	
E1	7.90	8.80	0.311	0.346	3	
е	2.54 BSC		0.100 BSC			
L	13.46	14.10	0.530	0.555		
L1	-	1.65	-	0.065	3	
L2	3.56	3.71	0.140	0.146		

Notes

- $^{(1)}$ Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches

(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.