

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Inverter Grade Thyristors (Hockey PUK Version), 370 A

TO-200AB (A-PUK)

PRODUCT SUMMARY	PRODUCT SUMMARY				
Package	TO-200AB (A-PUK)				
Diode variation	Single SCR				
I _{T(AV)}	370 A				
V _{DRM} /V _{RRM}	1000 V, 1200 V				
V_{TM}	1.72 V				
I _{TSM} at 50 Hz	5260 A				
I _{TSM} at 60 Hz	5510 A				
I _{GT}	200 mA				
T _C /T _{hs}	55 °C				

FEATURES

- Metal case with ceramic insulator
- All diffused design
- · Center amplifying gate
- Guaranteed high dV/dt
- International standard case TO-200AB (A-PUK)
- · Guaranteed high dl/dt
- High surge current capability
- Low thermal impedance
- High speed performance
- · Designed and qualified for industrial level
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Inverters
- Choppers
- · Induction heating
- All types of force-commutated converters

MAJOR RAT	INGS AND CHARACTERISTICS			
PARAMETER	TEST CONDITIONS	VALUES	UNITS	
		370	А	
Γ(AV) T	T _{hs}	55	°C	
1		700	А	
T(RMS)	T _{hs}	25	°C	
1	50 Hz	5260	^	
I _{TSM}	60 Hz	5510	Α	
l ² t	50 Hz	138	kA ² s	
1-1	60 Hz	126		
V _{DRM} /V _{RRM}		1000 to 1200	V	
t _q	Range	20 to 30	μs	
TJ		-40 to 125	°C	

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER VOLTAGE CODE VDRM/VRRM, MAXIMUM REPETITIVE PEAK VOLTAGE V		V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	$\begin{split} &I_{DRM}/I_{RRM} \text{ MAXIMUM} \\ &AT T_J = T_J \text{ MAXIMUM} \\ & \text{mA} \end{split}$				
VS-ST203CC	10	1000	1100	40			
VS-S1203CC	12	1200	1300	40			

CURRENT CARRYING CAPABILITY							
FREQUENCY	180°	el I _{TM}	180	I _{TM}	100	μs	UNITS
50 Hz	860	750	1340	1160	5620	5020	
400 Hz	840	706	1400	1220	2940	2590	A
1000 Hz	700	580	1350	1170	1750	1520	_ ^
2500 Hz	430	340	980	830	910	780	
Recovery voltage V _r	5	0	50		50		V
Voltage before turn-on V _d	V_{DRM}		V_{DRM}		V_{DRM}] V
Rise of on-state current dl/dt	50		-		-		A/µs
Heatsink temperature	40	55	40	55	40	55	°C
Equivalent values for RC circuit	47/0	0.22	47/	0.22	47/0.22		Ω/μF

ON-STATE CONDUCTION						
PARAMETER	SYMBOL		TEST CON	NDITIONS	VALUES	UNITS
Maximum average on-state current	L	180° condu	180° conduction, half sine wave		370 (140)	Α
at heatsink temperature	I _{T(AV)}	double side	(single side) co	oled	55 (85)	°C
Maximum RMS on-state current	I _{T(RMS)}	DC at 25 °C	heatsink temp	erature double side cooled	700	
		t = 10 ms	No voltage		5260	
Maximum peak, one half cycle,	L	t = 8.3 ms	reapplied		5510	Α
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		4420	- kA ² s
		t = 8.3 ms	reapplied	Sinusoidal half wave,	4630	
Maximum I ² t for fusing	l ² t	t = 10 ms	No voltage	initial $T_J = T_J$ maximum	138	
		t = 8.3 ms	reapplied		126	
Maximum i-t for fusing		t = 10 ms	100 % V _{RRM}		98	
		t = 8.3 ms	reapplied		89	
Maximum $I^2\sqrt{t}$ for fusing	I²√t	t = 0.1 to 10	ms, no voltage	e reapplied	1380	kA²√s
Maximum peak on-state voltage	V _{TM}		, T _J = T _J maxim		1.72	
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), $T_J = T_J$ maximum			V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$			1.22	
Low level value of forward slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), $T_J = T_J$ maximum			0.92	
High level value of forward slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$			0.83	mΩ
Maximum holding current	l _Η	T _J = 25 °C,	I _T > 30 A		600	mA
Typical latching current	Ι _L	T _J = 25 °C,	V _A = 12 V, R _a =	6 Ω, I _G = 1 A	1000	IIIA

SWITCHING							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum non-repetitive rate of rise of turned on current	dl/dt	$T_J = T_J$ maximum, $V_{DRM} = Rated V_{DRM}$ $I_{TM} = 2 \times dI/dt$	1000	A/μs			
Typical delay time	t _d	T_J = 25 °C, V_{DM} = Rated V_{DRM} , I_{TM} = 50 A DC, t_p = 1 μs Resistive load, gate pulse: 10 V, 5 Ω source	0.8				
Maximum turn-off time minimum		$T_J = T_J$ maximum, $I_{TM} = 300$ A, commutating dl/dt = 20 A/ μ s	20	μs			
maximum	t _q	$V_R = 500 \text{ K}$, commutating divid = 20 Mps $V_R = 50 \text{ V}$, $t_p = 500 \text{ µs}$, dV/dt: See table in device code	30				

BLOCKING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum critical rate of rise of off-state voltage	dV/dt	T _J = T _J maximum, linear to 80 % V _{DRM} , higher value available on request	500	V/µs	
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	40	mA	

TRIGGERING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}	T _{.1} = T _{.1} maximum, f = 50 Hz, d % = 50	60	W
Maximum average gate power	P _{G(AV)}	11 = 11 maximum, 1 = 30 mz, 0.76 = 30	10	VV
Maximum peak positive gate current	I _{GM}		10	Α
Maximum peak positive gate voltage	+ V _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms	20	- v
Maximum peak negative gate voltage	- V _{GM}		5	
Maximum DC gate currrent required to trigger	I _{GT}	T - 25 °C V - 12 V B - 6 O	200	mA
Maximum DC gate voltage required to trigger	V _{GT}	$T_J = 25 ^{\circ}\text{C}, V_A = 12 \text{V}, R_a = 6 \Omega$	3	V
Maximum DC gate current not to trigger	I _{GD}	T - T maximum rated // applied	20	mA
Maximum DC gate voltage not to trigger	V_{GD}	$T_J = T_J$ maximum, rated V_{DRM} applied	0.25	V

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum operating junction temperature range	TJ		- 40 to 125	°C	
Maximum storage temperature range	T _{Stg}		- 40 to 150		
Maximum thermal resistance in action to be stainly	В	DC operation single side cooled	0.17		
Maximum thermal resistance, junction to heatsink	R _{thJ-hs}	DC operation double side cooled	0.08	K/W	
Maying up they mal reciptored ages to be steinly	R _{thC-hs}	DC operation single side cooled	0.033	l √vv	
Maximum thermal resistance, case to heatsink		DC operation double side cooled	0.017		
Mounting force, ± 10 %			4900 (500)	N (kg)	
Approximate weight			50	g	
Case style		See dimensions - link at the end of datasheet	TO-200AB	(A-PUK)	

△R _{thJ-hs} CONDUCTION							
CONDUCTION ANGLE	SINUSOIDAL CON		ONDUCTION RECTANGULAR CONDUCTION			UNITS	
CONDOCTION ANGLE	Single Side	Double Side	Single Side	Double Side	TEST CONDITIONS	UNITS	
180°	0.015	0.017	0.011	0.011			
120°	0.018	0.019	0.019	0.019			
90°	0.024	0.024	0.026	0.026	$T_J = T_J$ maximum	K/W	
60°	0.035	0.035	0.036	0.037			
30°	0.060	0.060	0.060	0.061			

Note

Maximum Allowable Heatsink Temperature (°C)

20

0 50

The table above shows the increment of thermal resistance R_{thJ-hs} when devices operate at different conduction angles than DC

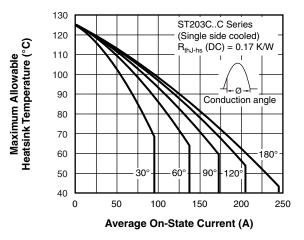


Fig. 1 - Current Ratings Characteristics

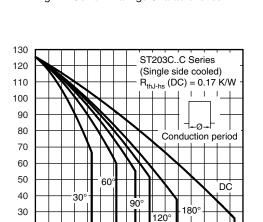


Fig. 2 - Current Ratings Characteristics

150 200 250

Average On-State Current (A)

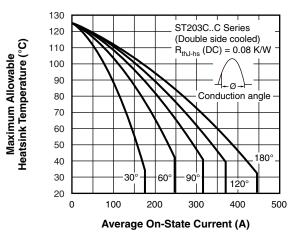


Fig. 3 - Current Ratings Characteristics

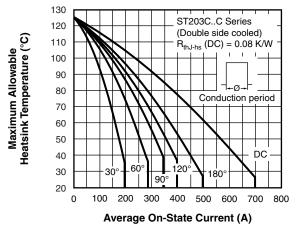


Fig. 4 - Current Ratings Characteristics

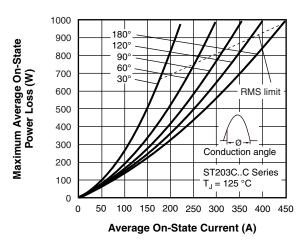


Fig. 5 - On-State Power Loss Characteristics

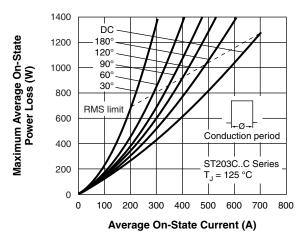


Fig. 6 - On-State Power Loss Characteristics

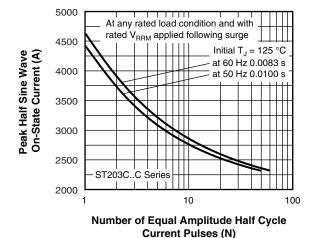


Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

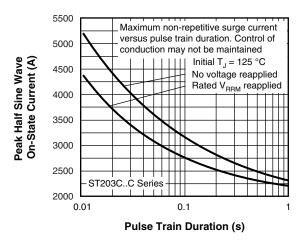


Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

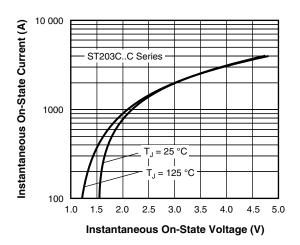


Fig. 9 - On-State Voltage Drop Characteristics

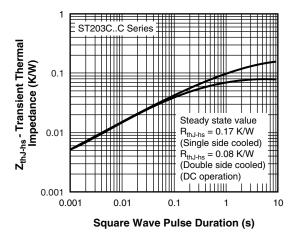


Fig. 10 - Thermal Impedance Z_{thJ-hs} Characteristics

Snubber circuit

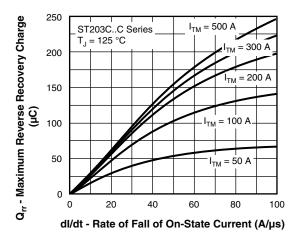


Fig. 11 - Reverse Recovered Charge Characteristics

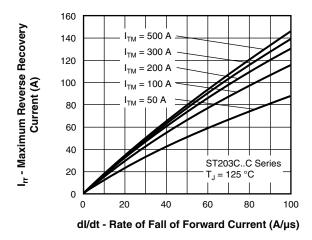
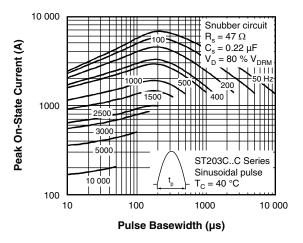



Fig. 12 - Reverse Recovery Current Characteristics

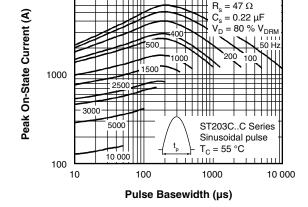
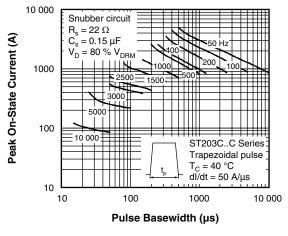



Fig. 13 - Frequency Characteristics

10 000

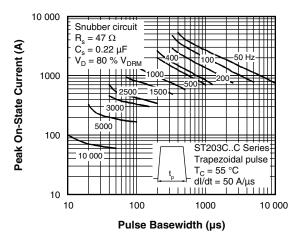


Fig. 14 - Frequency Characteristics

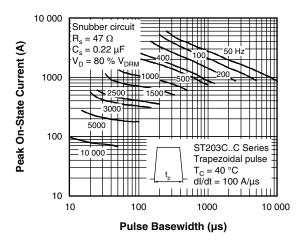
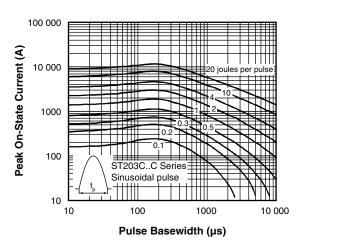



Fig. 15 - Frequency Characteristics

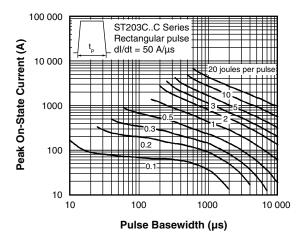


Fig. 16 - Maximum On-State Energy Power Loss Characteristics

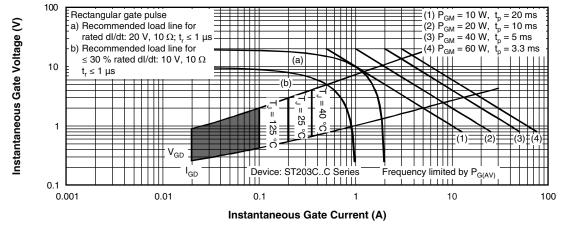
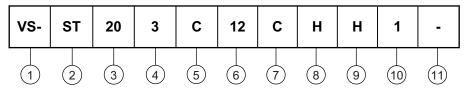



Fig. 17 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code

- Vishay Semiconductors product
- Thyristor
- Essential part number
- 3 = Fast turn-off
- C = Ceramic PUK
- Voltage code x 100 = V_{RRM} (see Voltage Ratings table)
- C = PUK case TO-200AB (A-PUK)
- Reapplied dV/dt code (for t_q test condition)
- ta code -
- 0 = Eyelet terminals

(gate and auxiliary cathode unsoldered leads)

1 = Fast-on terminals

(gate and auxiliary cathode unsoldered leads)

2 = Eyelet terminals

(gate and auxiliary cathode soldered leads)

3 = Fast-on terminals

(gate and auxiliary cathode soldered leads)

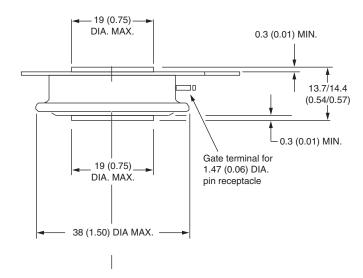
- 11 Critical dV/dt:
 - None = 500 V/µs (standard value)
 - L = 1000 V/µs (special selection)

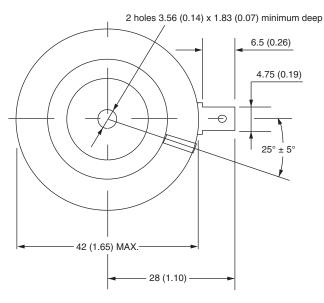
dV/dt - t _q combinations available						
	dV/dt (V/μs)	20	50	100	200	400
	20	CK	DK	EK	- FJ*	-
t,	_q (µs) 25	CJ	DJ	EJ	FJ*	-
	30	CH	DH	EH	FH	HH

* Standard part number.

All other types available only on request.

LINKS TO RELATED DOCUMENTS		
Dimensions	www.vishay.com/doc?95074	




TO-200AB (A-PUK)

DIMENSIONS in millimeters (inches)

Anode to gate

Creepage distance: 7.62 (0.30) minimum Strike distance: 7.12 (0.28) minimum

Quote between upper and lower pole pieces has to be considered after application of mounting force (see thermal and mechanical specification)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.