imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

www.vishay.com

Vishay Semiconductors

ADD-A-PAK Generation VII Power Modules Thyristor/Diode and Thyristor/Thyristor, 75 A

ADD-A-PAK

PRODUCT SUMMARY						
I _{T(AV)} or I _{F(AV)}	75 A					
Туре	Modules - Thyristor, Standard					

MECHANICAL DESCRIPTION

The ADD-A-PAK Generation VII, new generation of ADD-A-PAK module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- High voltage
- Industrial standard package
- Low thermal resistance
- UL approved file E78996
- · Designed and qualified for industrial level
- · Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- · Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- · High surge capability
- · Easy mounting on heatsink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
I _{T(AV)} or I _{F(AV)}	85 °C	75					
I _{O(RMS)}	As AC switch	165	А				
I _{TSM,}	50 Hz	1300	A				
I _{FSM}	60 Hz	1360					
l ² t	50 Hz	8.45	kA ² s				
1-1	60 Hz	7.68	KA-S				
l²√t		84.5	kA²√s				
V _{RRM}	Range	400 to 1600	V				
T _{Stg}		-40 to 125	°C				
TJ		-40 to 125	C°				

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM,} I _{DRM} AT 125 °C mA			
	04	400	500	400				
	06	600	700	600				
	08	800	900	800				
VS-VSK.71	10	1000	1100	1000	15			
	12	1200	1300	1200				
	14	1400	1500	1400				
	16	1600	1700	1600				

ON-STATE CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average on-state current (thyristors)	I _{T(AV)}	180° conductio	on, half sine way	/e,	75	
Maximum average forward current (diodes)	I _{F(AV)}	T _C = 85 °C			75	
Maximum continuous RMS on-state current, as AC switch	I _{O(RMS)}		r ⊢ I _(RMS) or ⊶		165	A
		t = 10 ms	No voltage		1300	<i>/</i> (
Maximum peak, one-cycle non-repetitive	I _{TSM}	t = 8.3 ms	reapplied	Sinusoidal	1360	
on-state or forward current	or I _{FSM}	t = 10 ms	100 % V _{RRM}	half wave, initial TJ = TJ maximum	1093	
	1 310	t = 8.3 ms	reapplied		1140	
		t = 10 ms	No voltage		8.45	kA ² s
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied		7.68	
		t = 10 ms	100 % V _{RBM}	Initial $T_J = T_J$ maximum	5.97	
		t = 8.3 ms	reapplied		5.45	
Maximum I ² \sqrt{t} for fusing	l²√t ⁽¹⁾	t = 0.1 ms to 10 ms, no voltage reapplied $T_J = T_J$ maximum			84.5	kA²√s
Maximum value or threshold valtage	V (2)	Low level (3)	T _J = T _J maximum		0.96	
Maximum value or threshold voltage	V _{T(TO)} ⁽²⁾	High level ⁽⁴⁾			1.08	V
Maximum value of on-state	r _t ⁽²⁾	Low level (3)	·		3.28	
slope resistance	rt (=)	High level ⁽⁴⁾	$T_J = T_J maxin$	lum	2.86	mΩ
	V _{TM}	$I_{TM} = \pi \times I_{T(AV)}$	T 05.00		1.72	V
Maximum peak on-state or forward voltage	V _{FM}	$I_{FM} = \pi \times I_{F(AV)}$	T _J = 25 °C		1.72	v
Maximum non-repetitive rate of rise of turned on current	dl/dt	$T_J = 25 \text{ °C, from}$ $I_{TM} = \pi \times I_{T(AV)},$	150	A∕µs		
Maximum holding current	I _H	$T_J = 25 \text{ °C, and}$ resistive load, g	V,	250	mA	
Maximum latching current	١L	T _J = 25 °C, and	ode supply = 6	V, resistive load	400	

Notes

⁽¹⁾ I²t for time $t_x = I^2 \sqrt{t} x \sqrt{t_x}$

⁽²⁾ Average power = $V_{T(TO)} \times I_{T(AV)} + r_t \times (I_{T(RMS)})^2$

⁽³⁾ 16.7 % x π x $I_{AV} < I < \pi$ x I_{AV}

 $^{(4)} I > \pi \ x \ I_{AV}$

Revision: 21-Mar-14

2

www.vishay.com

VISHAY

Vishay Semiconductors

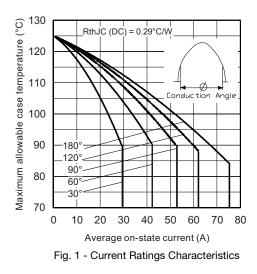
TRIGGERING							
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS		
Maximum peak gate power	P _{GM}			12	W		
Maximum average gate power	P _{G(AV)}			3.0	vv		
Maximum peak gate current	I _{GM}			3.0	А		
Maximum peak negative gate voltage	- V _{GM}			10	V		
	V _{GT}	T _J = -40 °C	Anode supply = 6 V resistive load	4.0			
Maximum gate voltage required to trigger		T _J = 25 °C		2.5			
		T _J = 125 °C		1.7			
	I _{GT}	T _J = -40 °C		270			
Maximum gate current required to trigger		T _J = 25 °C	Anode supply = 6 V resistive load	150	mA		
		T _J = 125 °C		80			
Maximum gate voltage that will not trigger	V _{GD}	T _J = 125 °C, rated V _{DRM} applied		0.25	V		
Maximum gate current that will not trigger	I _{GD}	$T_J = 125 \text{ °C}, \text{ rated } V_{DRN}$	6	mA			

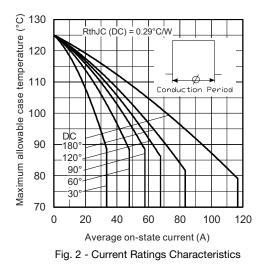
BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum peak reverse and off-state leakage current at V _{RRM} , V _{DRM}	I _{RRM,} I _{DRM}	T _J = 125 °C, gate open circuit	15	mA				
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V				
Maximum critical rate of rise of off-state voltage	dV/dt	T_J = 125 °C, linear to 0.67 V_{DRM}	1000	V/µs				

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	SYMBOL TEST CONDITIONS		UNITS		
Junction operating and storage temperature range		T _J , T _{Stg}		-40 to 125	°C		
Maximum internal thermal resist junction to case per leg	ance,	R _{thJC}	DC operation	0.29	°C/W		
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.1	C/W		
to hea			A mounting compound is recommended and the	4	Nu		
Mounting torque ± 10 %	busbar		torque should be rechecked after a period of 3 hours to allow for the spread of the compound.	3	Nm		
Approximate weight				75	g		
				2.7	oz.		
Case style			JEDEC®	AAP GEN VI	(TO-240AA)		

DEVICES	SINE HALF WAVE CONDUCTION					RECTANGULAR WAVE CONDUCTION					
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30 °	
VSK.71	0.052	0.062	0.079	0.116	0.197	0.037	0.064	0.085	0.121	0.200	°C/W

Note


• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC


Revision: 21-Mar-14

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

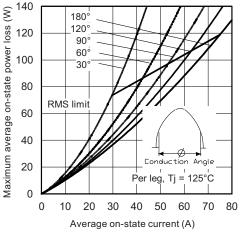
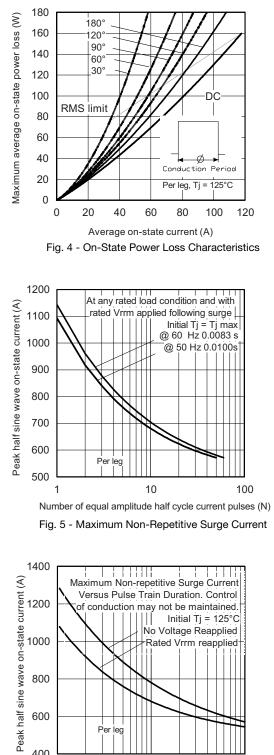
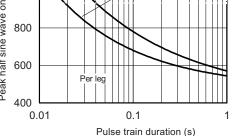
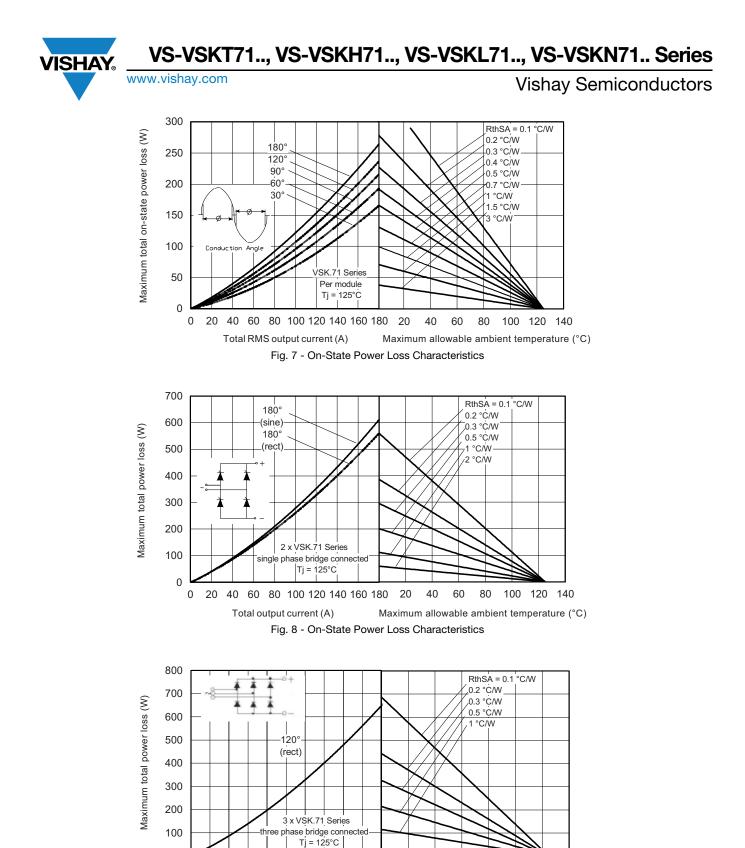




Fig. 3 - On-State Power Loss Characteristics



Revision: 21-Mar-14

4

Document Number: 94631

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

200 20 40

Fig. 9 - On-State Power Loss Characteristics

60

80

Maximum allowable ambient temperature (°C)

100 120 140

0

40

80

Total output current (A)

120

160

www.vishay.com

Vishay Semiconductors

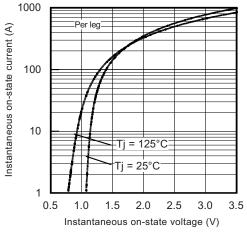
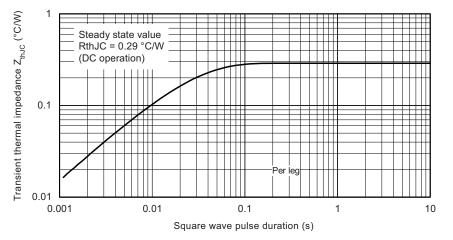
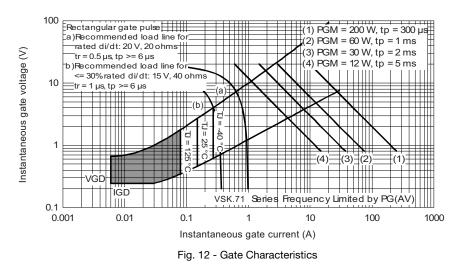
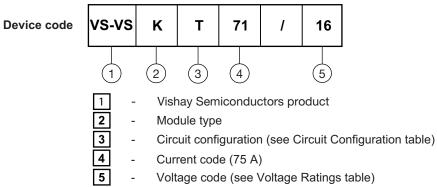




Fig. 10 - On-State Voltage Drop Characteristics


 Revision: 21-Mar-14
 6
 Document Number: 94631

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

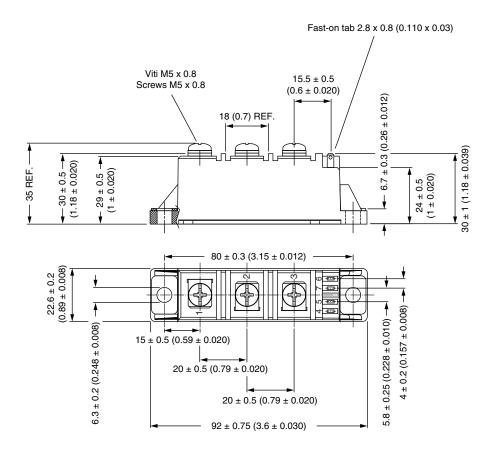
Vishay Semiconductors

ORDERING INFORMATION TABLE

Note

• To order the optional hardware go to <u>www.vishay.com/doc?95172</u>

CIRCUIT CONFIGURATION						
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
Two SCRs doubler circuit	Т	State State				
SCR/diode doubler circuit, positive control	Н					
SCR/diode doubler circuit, negative control	L	VSKL				
SCR/diode common anodes	N					
LINKS TO RELATED DOCUMENTS						
Dimensions <u>www.vishay.com/doc?95368</u>						


For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

ADD-A-PAK Generation VII - Thyristor

DIMENSIONS in millimeters (inches)

SHA

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.