

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

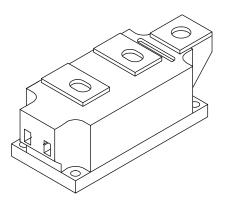
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

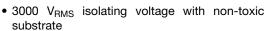
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Fast Diodes, 460 A (SUPER MAGN-A-PAK Power Modules)



SUPER MAGN-A-PAK

PRODUCT SUMMARY				
I _{F(AV)}	460 A			
Type	Modules - Diode, Fast			

FEATURES

- High power fast recovery diode series
- High current capability

- High surge capability
- High voltage ratings up to 2500 V
- Industrial standard package
- UL approved file E78996
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for industrial level

TYPICAL APPLICATIONS

- Snubber for large GTO
- Snubber for large IGBT

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
1		460	А			
I _{F(AV)}	T _C	82	°C			
1		720	A			
I _{F(RMS)}	T _C	82	°C			
I _{FSM}	50 Hz	13 000	Δ.			
	60 Hz	13 800	Α			
10.	50 Hz	845	1.42-			
I ² t	60 Hz	790	kA ² s			
I²√t		8450	kA²√s			
V _{RRM}	Range	1600 to 2500	V			
t _{rr}		4.0	μs			
T _{Stg} , T _J	Range	- 40 to 150	°C			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J MAXIMUM mA				
	16	1600	1700					
VSKDL450S20	20	2000	2100	50				
	25	2500	2600					

VSKDL450 Series

Vishay Semiconductors

Fast Diodes, 460 A (SUPER MAGN-A-PAK Power Modules)

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current	_	1000			460	Α
at case temperature	I _{F(AV)}	180° conduction, half sine wave		82	°C	
Maximum RMS forward current	I _{F(RMS)}	180° condu	ction, half sine	wave at T _C = 82 °C	720	Α
		t = 10 ms	No voltage		13.0	
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied		13.8	kA
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}	Sinusoidal half wave,	11.1	
		t = 8.3 ms	reapplied		11.8	
	l ² t	t = 10 ms	No voltage	initial $T_J = T_J$ maximum	845	- kA ² s
Maximum 12t far fraing		t = 8.3 ms	reapplied		790	
Maximum I ² t for fusing	1-1	t = 10 ms	100 % V _{RRM}		616	
		t = 8.3 ms	reapplied		578	
Maximum I²√t for fusing	I²√t	t = 0.1 ms to 10 ms, no voltage reapplied			8450	kA²√s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $T_J = T_J$ maximum		1.16	V	
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			1.62	V
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J = T _J maximum			0.68	
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			0.41	mΩ
Maximum forward voltage drop	V_{FM}	I _{pk} = 1800 A	$A, T_J = 25 ^{\circ}C, t_p$	= 10 ms sine pulse	2.20	V

RECOV	RECOVERY CHARACTERISTICS								
	MAXIMUM VALUE AT T _J = 25 °C	TEST CONDITIONS			TYPICAL VALUES AT T _J = 150 °C		↑ .		
CODE	t _{rr} AT 25 % I _{RRM}	I _{pk} SQUARE PULSE (A)	dI/dt (A/ s)	V _r (V)	t _{rr} AT 25 % I _{RRM} (s)	Q _{rr} (C)	I _r (A)	di/ Q _{rr}	
S20	2.0	1000	100	- 50	4	400	180	¹ ¶RM(REC)	

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
RMS insulation voltage	V _{INS}	t = 1 s	3000	V
Maximum peak reverse and off-state leakage current	I _{RRM}	$T_J = T_J$ maximum, rated V_{RRM} applied	50	mA

Fast Diodes, 460 A (SUPER MAGN-A-PAK Power Modules)

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum operating junction temperature range	on and storage	T _J , T _{Stg}		- 40 to 150	°C
Maximum thermal resistan junction to case per junction	·	R _{thJC}	DC operation	0.065	K/W
Maximum thermal resistan case to heatsink	ce,	R _{thC-hs}		0.02	₩
Mounting torque ± 10 %	SMAP to heatsink		A mounting compound is recommended and the torque should be rechecked after a	6 to 8	Nm
busbar to SMAF			period of 3 hours to allow for the spread of the compound.	12 to 15	INIII
Approximate weight				1500	g
Case style See dimensions - link at the end of datasheet		SUPER MA	GN-A-PAK		

△R _{th} JC CONDUCTION						
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS		
180°	0.009	0.006				
120°	0.011	0.011				
90°	0.014	0.015	$T_J = T_J$ maximum	K/W		
60°	0.021	0.022				
30°	0.037	0.038				

Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Fast Diodes, 460 A (SUPER MAGN-A-PAK Power Modules)

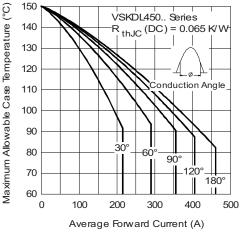


Fig. 1 - Current Ratings Characteristics

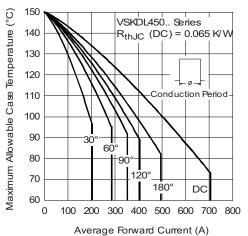


Fig. 2 - Current Ratings Characteristics

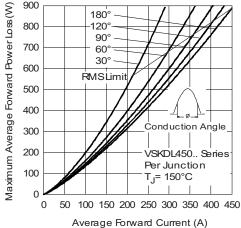


Fig. 3 - Forward Power Loss Characteristics

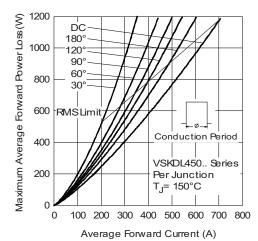


Fig. 4 - Forward Power Loss Characteristics

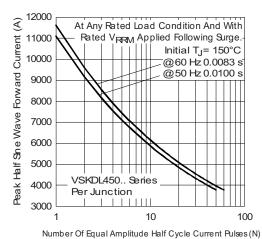
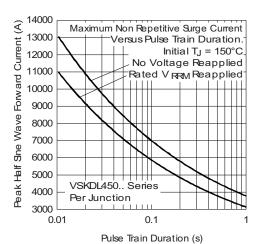
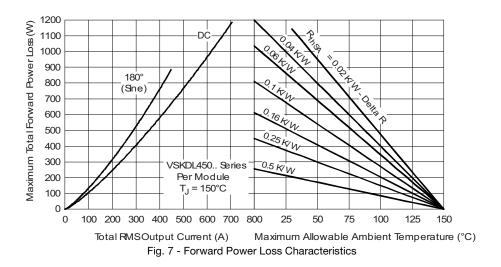


Fig. 5 - Maximum Non-Repetitive Surge Current




Fig. 6 - Maximum Non-Repetitive Surge Current

Fast Diodes, 460 A (SUPER MAGN-A-PAK Power Modules)

Vishay Semiconductors

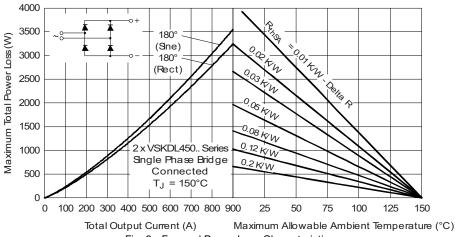


Fig. 8 - Forward Power Loss Characteristics

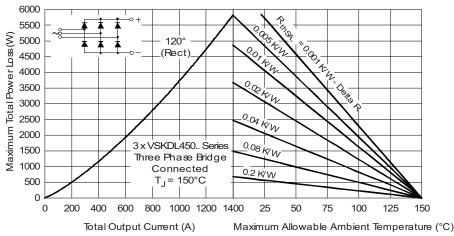
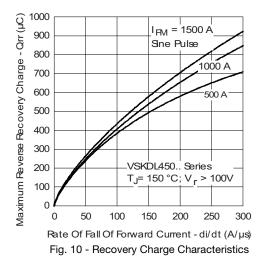
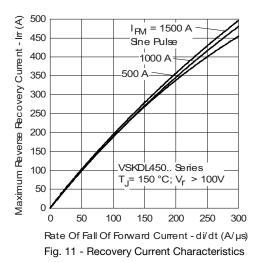



Fig. 9 - Forward Power Loss Characteristics

Fast Diodes, 460 A (SUPER MAGN-A-PAK Power Modules)


10000 Type 25°C Type 150°C.

VSKDL450.. Series Per Junction

100
0.5 1 1.5 2 2.5 3 3.5 4

Instantaneous Forward Voltage (V)

Fig. 12 - Forward Voltage Drop Characteristics

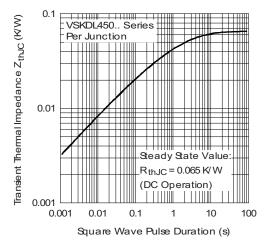
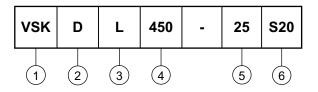



Fig. 13 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code

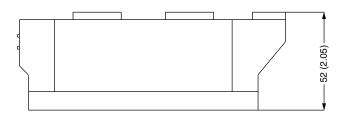
- 1 Module type
- **2** Circuit configuration:

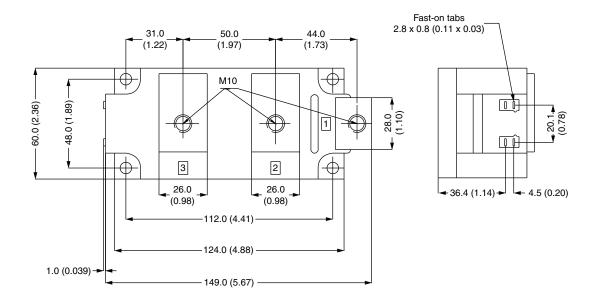
D = 2 diodes in series (see Circuit Configuration table)

- 3 Fast recovery
- 4 Current rating
- 5 Voltage code x 100 = V_{RRM} (see Voltage Ratings table)
- 6 t_{rr} code (see Recovery Characteristics table)

Fast Diodes, 460 A (SUPER MAGN-A-PAK Power Modules)

Vishay Semiconductors


CIRCUIT CONFIGURATION				
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING		
Two diodes doubler circuit	D	10 + 2 - 3		


LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95088		

Super MAGN-A-PAK Diode

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

www.vishay.com Revision: 11-Mar-11