imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Vishay Semiconductors

Thyristor/Diode and Thyristor/Thyristor (SUPER MAGN-A-PAK Power Modules), 430 A

SUPER MAGN-A-PAK

FEATURES

- High current capability
- High surge capability
- High voltage ratings up to 2000 V
- \bullet 3000 V_{RMS} isolating voltage with non-toxic substrate
- Industrial standard package
- UL approved file E78996
- Compliant to RoHS directive 2002/95/EC
- **TYPICAL APPLICATIONS**
- Motor starters
- DC motor controls AC motor controls
- Uninterruptable power supplies
- Wind mill

PRODUCT SUMMARY				
I _{T(AV)}	430 A			

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
I _{T(AV)}	82 °C	430	А				
1		675	А				
I _{T(RMS)}	T _C	82	°C				
I _{TSM}	50 Hz	15.7	kA				
	60 Hz	16.4	KA				
l ² t	50 Hz	1232	kA ² s				
141	60 Hz	1125	KA≏S				
l²√t		12 320	kA²√s				
V _{RRM}	Range	1600 to 2000	V				
TJ	Danga	- 40 to 150	°C				
T _{Stg}	Range	- 40 to 130					

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} MAXIMUM AT T _J = T _J MAXIMUM mA				
	16	1600	1700					
VSK.430	18	1800	1900	100				
	20	2000	2100					

COMPLIANT

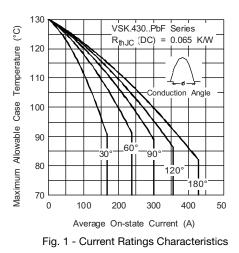
Vishay Semiconductors Thyristor/Diode and Thyristor/Thyristor (SUPER MAGN-A-PAK Power Modules), 430 A

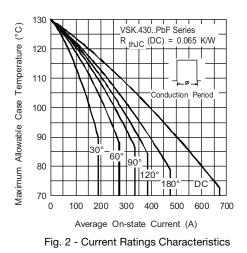
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average on-state current	I _{T(AV),}			430	А	
at case temperature	I _{F(AV)}	180° condu	180° conduction, half sine wave			°C
Maximum RMS on-state current	I _{T(RMS)}	180° condu	ction, half sine v	vave at T _C = 82 °C	675	А
		t = 10 ms	No voltage		15.7	kA
Maximum peak, one-cycle,	I _{TSM,}	t = 8.3 ms	reapplied		16.4	
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RBM}		13.2	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	13.8	
Maximum I ² t for fusing		t = 10 ms	No voltage	initial $T_J = T_J$ maximum	1232	kA ² s
	l ² t	t = 8.3 ms	reapplied		1125	
		t = 10 ms	100 % V _{RRM} reapplied		871	
		t = 8.3 ms			795	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 ms to 10 ms, no voltage reapplied			12 320	kA²√s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x I _{T(AV)} < I < π x I _{T(AV)}), T _J = T _J maximum			0.96	Ň
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{T(AV)})$), T _J = T _J maxim	um	1.06	V
Low level value of on-state slope resistance	r _{f1}	(16.7 % x π	$x I_{T(AV)} < I < \pi x$	$I_{T(AV)}$), $T_J = T_J$ maximum	0.51	
High level value of on-state slope resistance	r _{f2}	$(I > \pi \times I_{T(AV)}), T_J = T_J maximum$			0.45	mΩ
Maximum on-state voltage drop	V _{TM}	I_{pk} = 1500 A, T_J = 25 °C, t_p = 10 ms sine pulse			1.65	V
Maximum forward voltage drop	V _{FM}	I_{pk} = 1500 A, T_J = 25 °C, t_p = 10 ms sine pulse			1.65	V
Maximum holding current	Ι _Η	т об %О	anada ayanlı 10		500	
Typical latching current	١L	$T_J = 25 \text{ °C}$, anode supply 12 V resistive load			1000	mA

SWITCHING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum rate of rise of turned-on current	dl/dt	$T_J = T_J$ maximum, $I_{TM} = 400$ A, V_{DRM} applied	1000	A/µs	
Typical delay time	t _d	Gate current 1 A, dl _g /dt = 1 A/µs V _d = 0.67 % V _{DRM} , T _J = 25 °C	2.0		
Typical turn-off time	t _q	I_{TM} = 750 A, T_J = T_J maximum, dl/dt = - 60 A/µs V_R = 50, dV/dt = 20 V/µs, Gate 0 V 100 Ω	200	μs	

BLOCKING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum critical rate of rise of off-state voltage	dV/dt	T_J = 130 °C, linear to V_D = 80 % V_{DRM}	1000	V/µs	
RMS insulation voltage	V _{INS}	t = 1 s	3000	V	
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	100	mA	

Thyristor/Diode and Thyristor/Thyristor Vishay Semiconductors (SUPER MAGN-A-PAK Power Modules), 430 A


THERMAL AND MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction operating temperature range	TJ		- 40 to 130	°C
Maximum storage temperature range	T _{Stg}		- 40 to 150	
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation 0.00		K/W
Maximum thermal resistance, case to heatsink	R _{thC-hs}		0.02	rv vv
SMAP to heatsink Mounting torgue ± 10 %	ζ.	A mounting compound is recommended and the torque should be rechecked after a period of	6 to 8	Nm
busbar to SMAF	•	3 hours to allow for the spread of the compound.	12 to 15	INITI
Approximate weight			1500	g
Case style		See dimensions - link at the end of datasheet	SUPER MA	GN-A-PAK


CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS			
180°	0.009	0.006					
120°	0.011	0.011					
90°	0.014	0.015	$T_J = T_J$ maximum	K/W			
60°	0.021	0.022					
30°	0.037	0.038					

Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Vishay Semiconductors Thyristor/Diode and Thyristor/Thyristor (SUPER MAGN-A-PAK Power Modules), 430 A

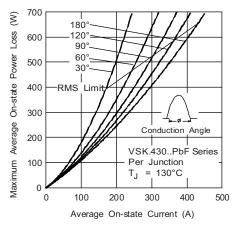


Fig. 3 - On-State Power Loss Characteristics

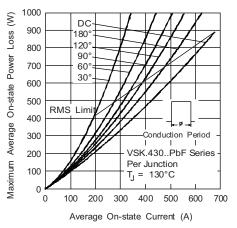


Fig. 4 - On-State Power Loss Characteristics

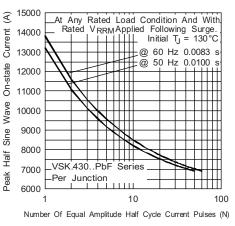
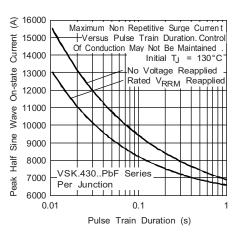
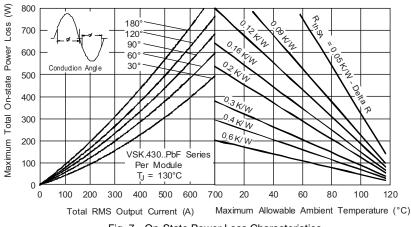
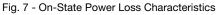
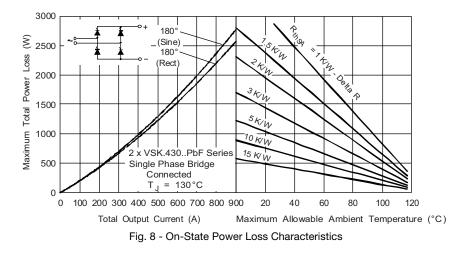


Fig. 5 - Maximum Non-Repetitive Surge Current


Fig. 6 - Maximum Non-Repetitive Surge Current



Thyristor/Diode and Thyristor/Thyristor Vishay Semiconductors (SUPER MAGN-A-PAK Power Modules), 430 A

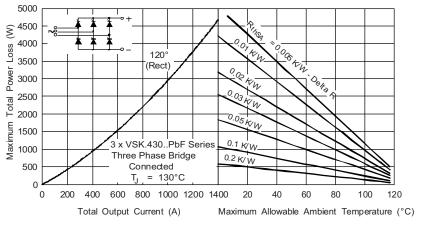


Fig. 9 - On-State Power Loss Characteristics

Vishay Semiconductors Thyristor/Diode and Thyristor/Thyristor (SUPER MAGN-A-PAK Power Modules), 430 A

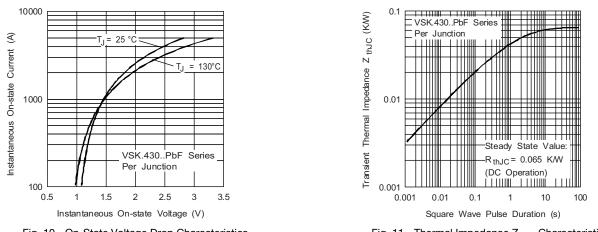


Fig. 10 - On-State Voltage Drop Characteristics

Fig. 11 - Thermal Impedance Z_{thJC} Characteristics

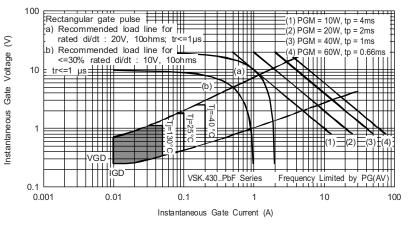
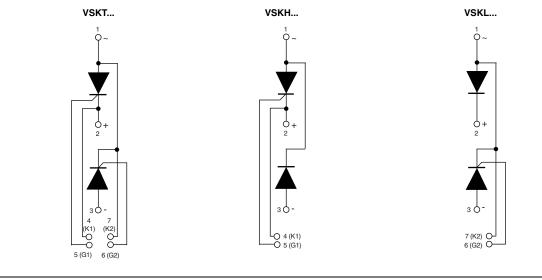


Fig. 12 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code	vsĸ	т	430	-	20	PbF	
		2	3		4	5	
	1 - 2 -		dule type cuit confi		n (see e	nd of da	atasheet)
	3 -		rent ratii	-	,		,
	4 -	Volt	age cod	e x 100	= V _{RRM}	_I (see V	oltage Ratings table)
	5 -	Lea	d (Pb)-fı	ee			

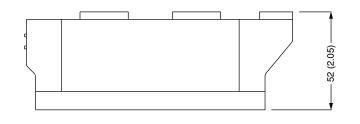
Note

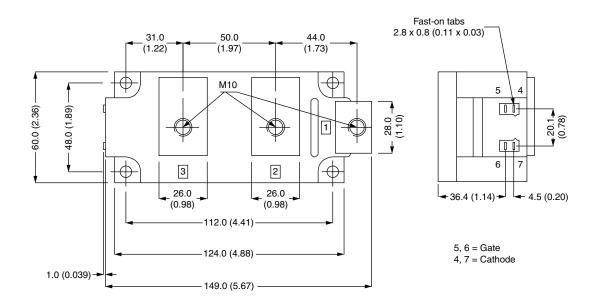

To order the optional hardware go to <u>www.vishay.com/doc?95172</u>

www.vishay.com 6

Thyristor/Diode and Thyristor/Thyristor Vishay Semiconductors (SUPER MAGN-A-PAK Power Modules), 430 A

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95283			



Vishay Semiconductors

Super MAGN-A-PAK Thyristor/Diode

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.