

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

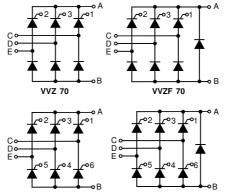
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Three Phase Rectifier Bridge


 $I_{dAV} = 70 A$ $V_{RRM} = 800-1600 V$

Preliminary data

\mathbf{V}_{RSM} \mathbf{V}_{DSM}	$oldsymbol{V}_{RRM} \ oldsymbol{V}_{DRM}$	Туре
٧	V	
800	800	xxx 70-08io7
1200	1200	xxx 70-12io7
1400	1400	xxx 70-14io7
1600	1600	xxx 70-16io7

 $f = 50 \text{ Hz}, t_p = 200 \mu\text{s}$

 $V_D = 2/3 V_{DRM}$

1200 1400 1600	1200 1400 1600	xxx 70-12i xxx 70-14i xxx 70-16i xxx = type	07 Co- 07 Eo-	vto 70	C o D o E o o o o o	704 706 TOF 70	E
Symbol	Test C	onditions			Maximu	m Ratings	3
I _{dAV} ① I _{dAVM} ① I _{FRMS} , I _{TRMS}	$T_{c} = 85$ module per leg	°C, module			7	70 A 70 A 86 A	
I _{FSM} , I _{TSM}	$T_{VJ} = 45$ $V_{R} = 0$	5°C; V		(50 Hz), sine (60 Hz), sine	55 60	-	_

-dAV				
I _{dAVM} ①	module		70	Α
I TRMS	per leg		36	Α
I _{FSM} , I _{TSM}	T _{VJ} = 45°C;	t = 10 ms (50 Hz), sine	550	Α
	$V_R = 0 V$	t = 8.3 ms (60 Hz), sine	600	Α
	$T_{VJ} = T_{VJM}$	t = 10 ms (50 Hz), sine	500	Α
	$V_R = 0 \text{ V}$	t = 8.3 ms (60 Hz), sine	550	Α
l²t	$T_{VJ} = 45^{\circ}C$	t = 10 ms (50 Hz), sine	1520	A^2s
	$V_R = 0 V$	t = 8.3 ms (60 Hz), sine	1520	A ² s
	$T_{VJ} = T_{VJM}$	t = 10 ms (50 Hz), sine	1250	A ² s
	$V_R = 0 \text{ V}$	t = 8.3 ms (60 Hz), sine	1250	A ² s
(di/dt) _{cr}	$T_{VJ} = 125^{\circ}C$	repetitive, $I_T = 50 \text{ A}$	150	A/μs

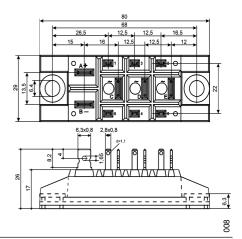
	$I_{G}^{D} = 0.3 \text{ A},$ $di_{G}/dt = 0.3 \text{ A}/\mu \text{s}$	non repetitive, $I_T = 1/2 \cdot I_{dAV}$	500	A/μs
(dv/dt) _{cr}	$T_{VJ} = T_{VJM}$; $V_{DR} = 2/3 V_{DRM}$ $R_{GK} = \infty$; method 1 (linear voltage rise)		1000	V/µs
V _{RGM}			10	V
P _{GM}	$T_{VJ} = T_{VJM}$	t _p = 30 μs	≤ 10	W
	1 1 '	±	, .	14/

P_{GM}	$T_{VJ} = T_{VJM}$	$t_p = 30 \mu s$	≤ 10	W
	$I_{T} = I_{TAVM}$	$t_{p} = 500 \mu s$	≤ 5	W
		t = 10 ms	≤ 1	W
P _{GAVM}		μ	0.5	W
T _{VJ}			-40+125	°C
T _{VJM}			125	°C
T _{stg}			-40+125	°C
V_{ISOL}	50/60 Hz, RMS	t = 1 min	2500	V~
1002	$I_{ISOL} \leq 1 \text{ mA}$	t = 1 s	3000	V~
M _d	Mounting torque	(M5)	5 ± 15 %	Nm
_		(10-32 UNF)	44 ± 15 %	lb.in.
Weiaht			50	а

Data according to IEC 60747 refer to a single diode/thyristor unless otherwise stated ① for resistive load at bridge output. IXYS reserves the right to change limits, test conditions and dimensions.

Features

- · Package with copper base plate
- Isolation voltage 3000 V~
- · Planar passivated chips
- · Low forward voltage drop
- 1/4" fast-on power terminals


Applications

- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- · Field supply for DC motors

Advantages

- · Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling capability
- · Small and light weight

Dimensions in mm (1 mm = 0.0394")

Symbol	Test Conditions	Charact	eristic \	/alues
I _D , I _R	$T_{VJ} = T_{VJM}; V_{R} = V_{RRM}; V_{D} = V_{DRM}$	≤	5	mA
V _T	$I_{T} = 80 \text{ A}; T_{VJ} = 25^{\circ}\text{C}$	≤	1.64	V
V _{TO}	For power-loss calculations only		0.85 11	V mΩ
\mathbf{V}_{GT}	$V_{D} = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$ $V_{D} = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$	< < < <	1.5 1.6 100 200	V V mA mA
V _{GD}	$T_{VJ} = T_{VJM};$ $V_D = 2/3 V_{DRM}$	≤ ≤	0.2 5	V mA
I _L	$T_{VJ} = 25^{\circ}\text{C}; t_p = 10 \ \mu\text{s}$ $I_G = 0.45 \ \text{A}; di_G/dt = 0.45 \ \text{A/}\mu\text{s}$	≤	450	mA
I _H	$T_{VJ} = 25$ °C; $V_D = 6$ V; $R_{GK} = \infty$	≤	200	mA
t _{gd}	$T_{VJ} = 25^{\circ}\text{C}; V_D = 1/2 V_{DRM}$ $I_G = 0.45 \text{ A}; \text{di}_G/\text{dt} = 0.45 \text{ A}/\mu\text{s}$	≤	2	μS
t _q	$T_{VJ} = T_{VJM}; I_T = 20 \text{ A}, t_P = 200 \mu\text{s}; di/dt = -10 \text{ A/}\text{A}; V_R = 100 \text{ V}; dv/dt = 15 \text{ V/}\mu\text{s}; V_D = 2/3 \text{ V}_{DRM}$	ıs typ.	250	μS
R _{thJC}	per thyristor / Diode; DC per module per thyristor / Diode; DC per module		0.9 0.15 1.1 0.157	K/W K/W K/W
d _s d _a a	Creeping distance on surface Creepage distance in air Max. allowable acceleration		16.1 7.5 50	mm mm m/s²