

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

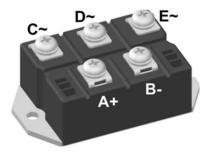
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

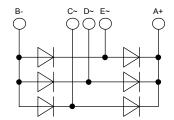
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Standard Rectifier Module

3∼ Rectifier				
V_{RRM}	=	1600 V		
I_{DAV}	=	125 A		
I _{FSM}	=	1200 A		


3~ Rectifier Bridge

Part number

VUO110-16NO7

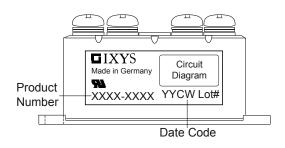
Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

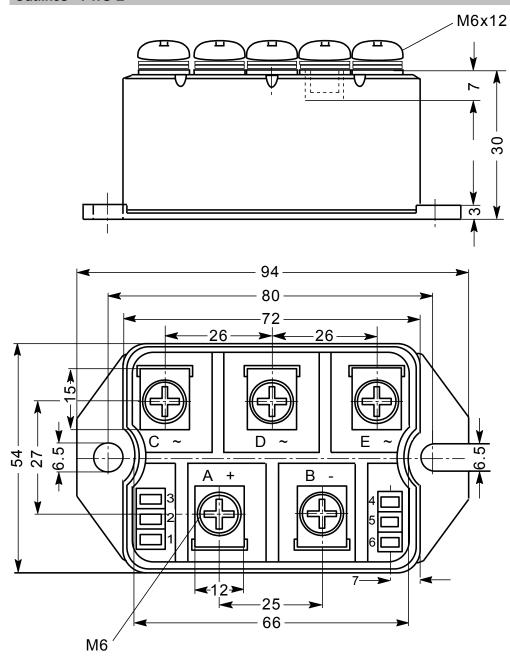
- Diode for main rectification
- For three phase bridge configurations Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

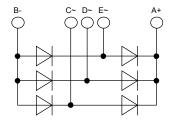
Package: PWS-E


- Industry standard outline
- RoHS compliant
- Easy to mount with two screws
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Rectifie	r				Ratings	3	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1700	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1600	V
I _R	reverse current	V _R = 1600 V	$T_{VJ} = 25^{\circ}C$			100	μΑ
		V _R = 1600 V	$T_{VJ} = 150^{\circ}C$			2	mΑ
V _F	forward voltage drop	I _F = 50 A	$T_{VJ} = 25^{\circ}C$			1.13	V
		I _F = 150 A				1.46	V
		I _F = 50 A	T _{VJ} = 125 °C			1.04	V
		I _F = 150 A				1.47	V
IDAV	bridge output current	T _c = 110°C	T _{VJ} = 150°C			125	Α
		rectangular d = ⅓					
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.79	V
r _F	slope resistance \(\) for power	loss calculation only				4.5	mΩ
R _{thJC}	thermal resistance junction to ca	ase				0.7	K/W
R _{thCH}	thermal resistance case to heats	sink			0.3		K/W
P _{tot}	total power dissipation		T _C = 25°C			175	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.20	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.30	kA
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			1.02	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.10	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			7.20	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			6.98	kA²s
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			5.20	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			5.04	kA²s
C	junction capacitance	$V_R = 400 \text{ V}; f = 1 \text{ MHz}$	T _{VJ} = 25°C		37		pF

Package PWS-E				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				200	Α
T _{stg}	storage temperature			-40		125	°C
T _{VJ}	virtual junction temperature			-40		150	°C
Weight					284		g
M _D	mounting torque			4.25		5.75	Nm
M _T	terminal torque			4.25		5.75	Nm
d Spp/App	creepage distance on surface striking distance through air		terminal to terminal	12.0			mm
d Spb/Apb			terminal to backside	26.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz RMS: IIsoi ≤ 1 mA	3000			V
		t = 1 minute		2500			V




Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VUO110-16NO7	VUO110-16NO7	Box	5	462403

Equivalent Circuits for Simulation			* on die level	T _{VJ} = 150 °C
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.79		V
R_{0max}	slope resistance *	3.3		$m\Omega$

Outlines PWS-E

Rectifier

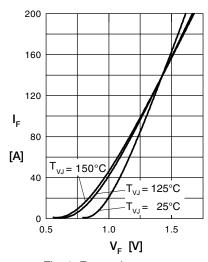


Fig. 1 Forward current vs. voltage drop per diode

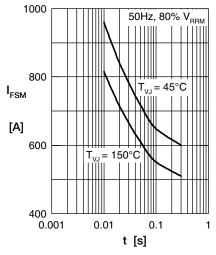


Fig. 2 Surge overload current vs. time per diode

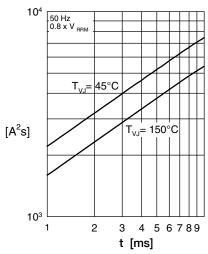


Fig. 3 I²t vs. time per diode

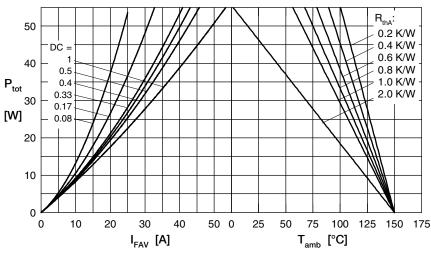


Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

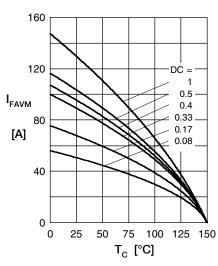


Fig. 5 Max. forward current vs. case temperature per diode

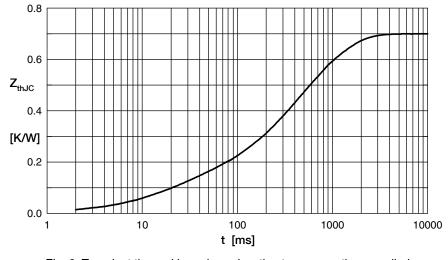


Fig. 6 Transient thermal impedance junction to case vs. time per diode

 $\begin{array}{ccc} R_i & t_i \\ 0.100 & 0.020 \\ 0.010 & 0.010 \\ 0.162 & 0.225 \\ 0.258 & 0.800 \\ 0.170 & 0.580 \\ \end{array}$

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified