Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # **Three Phase Rectifier Bridge** $I_{dAV} = 58 A$ $V_{RRM} = 800-1800 \text{ V}$ | V _{RSM} | V _{RRM} | Туре | |------------------|------------------|---------------| | V | V | | | 900 | 800 | VUO 50-08NO3 | | 1300 | 1200 | VUO 50-12NO3 | | 1500 | 1400 | VUO 50-14NO3 | | 1700 | 1600 | VUO 50-16NO3 | | 1900 | 1800 | VUO 50-18NO3* | ^{*} delivery time on request | Symbol | Test Conditions | | Maximum Ratings | | |---|---|---|---------------------------|----------------| | I _{dAV} ① | T _c = 85°C, module module | 58
75 | A
A | | | I _{FSM} | $T_{VJ} = 45^{\circ}C;$ $V_{R} = 0$ | t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine | 500
525 | A
A | | | $ \begin{array}{c} T_{VJ} = T_{VJM} \\ V_{R} = 0 \end{array} $ | t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine | 415
440 | A
A | | l²t | $T_{VJ} = 45^{\circ}C$ $V_{R} = 0$ | t = 10 ms (50 Hz), sine
t = 8.3 ms (60 Hz), sine | 1250
1160 | A²s
A²s | | | $ \begin{aligned} T_{VJ} &= T_{VJM} \\ V_{R} &= 0 \end{aligned} $ | t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine | 860
810 | A²s
A²s | | T _{VJ}
T _{VJM}
T _{stg} | | | -40+125
125
-40+125 | 0°
C°
C° | | V _{ISOL} | 50/60 Hz, RMS
I _{ISOL} ≤ 1 mA | t = 1 min
t = 1 s | 3000
3600 | V~
V~ | | M _d | Mounting torque | (M5)
(10-32 UNF) | 2-2.5
18-22 | Nm
lb.in. | | Weight | typ. | | 50 | g | | Symbol | Test Conditions | Characteristic Values | | |--------------------|---|------------------------------|--| | I _R | $V_{B} = V_{BBM}$; $T_{VJ} = 25^{\circ}C$ | 0.3 mA | | | | $V_{R}^{\prime\prime} = V_{RRM}^{\prime\prime\prime};$ $T_{VJ}^{\prime\prime} = T_{VJM}^{\prime\prime}$ | 5 mA | | | $\overline{V_{F}}$ | $I_F = 150 \text{ A}; \qquad T_{VJ} = 25^{\circ}\text{C}$ | 1.9 V | | | V_{T0} | For power-loss calculations only | 0.9 V | | | r _T | | 6.0 mΩ | | | R _{thJC} | per diode, DC current | 1.62 K/W | | | tiloc | per module | 0.27 K/W | | | R_{thJH} | per diode, DC current | 2.22 K/W | | | uion | per module | 0.37 K/W | | | $\overline{d_{s}}$ | Creeping distance on surface | 10 mm | | | d _A | Creepage distance in air | 9.4 mm | | | a | Max. allowable acceleration | 50 m/s ² | | Data according to IEC 60747 and refer to a single diode unless otherwise stated. ① for resistive load at bridge output IXYS reserves the right to change limits, test conditions and dimensions. - Package with DCB ceramic base plate - Isolation voltage 3600 V~ - Planar passivated chips - Blocking voltage up to 1800 V - Low forward voltage drop - 1/4" fast-on terminals - UL registered E 72873 ### **Applications** - Supplies for DC power equipment - Input rectifiers for PWM inverter - Battery DC power supplies - · Rectifier for DC motors field current ### **Advantages** - · Easy to mount with two screws - · Space and weight savings - Improved temperature and power cycling ### Dimensions in mm (1 mm = 0.0394") Use output terminals in parallel connection! Fig. 2 I2t versus time (1-10 ms) Fig. 3 Max. forward current at case temperature Fig. 4 Power dissipation versus forward current and ambient temperature Constants for Z_{thJK} calculation: | i | R _{thi} (K/W) | t _i (s) | |---|------------------------|--------------------| | 1 | 1.21 | 0.1015 | | 2 | 0.1339 | 0.1026 | | 3 | 0.2763 | 0.4919 | | 4 | 0.600 | 0.620 | Fig. 5 Transient thermal impedance junction to heatsink per diode