

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

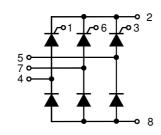
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

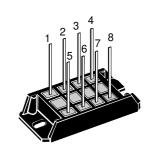
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





Three Phase Half Controlled Rectifier Bridge

 $I_{dAVM} = 20 A$ $V_{RRM} = 1200-1600 V$

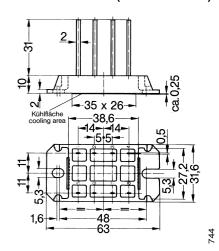
V _{RSM} V _{DSM}	V _{RRM} V _{DRM}	Туре
1300	1200	VVZ 12-12io1
1500	1400	VVZ 12-14io1
1700	1600	VVZ 12-16io1

Symbol	Test Conditions		Maximum Ra	Maximum Ratings	
I _{dAV} I _{dAVM} I _{FRMS} , I _{TRMS}	T _K = 100°C; module module per leg	е	15 20 12	A A A	
I _{FSM} , I _{TSM}	$T_{VJ} = 45^{\circ}C;$ $V_{R} = 0$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	110 115	A A	
		t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	100 105	A A	
l²t	$T_{VJ} = 45^{\circ}C$ $V_{R} = 0$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	60 55	A²s A²s	
	$ \overline{T_{VJ} = T_{VJM}} $ $ V_{R} = 0 $	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	50 45	A²s A²s	
(di/dt) _{cr}	$T_{VJ} = T_{VJM}$ $f = 400 \text{ Hz}, t_p = 200$ $V_D = 2/3 V_{DRM}$	repetitive, I _T = 50 A μs	150	A/μs	
	$I_{G}^{D} = 0.3 \text{ A},$ $di_{G}/dt = 0.3 \text{ A}/\mu\text{s}$	non repetitive, $I_T = 1/3 \tilde{I}_{dAV}$	500	A/μs	
(dv/dt) _{cr}	$T_{VJ} = T_{VJM}; V_{DR} = 2R$ $R_{GK} = \infty; method 1$	/3 V _{DRM} (linear voltage rise)	1000	V/µs	
V _{RGM}			10	V	
P _{GM}	$T_{VJ} = T_{VJM}$ $I_{T} = I_{TAVM}$	$t_{p} = 30 \mu s$ $t_{p} = 500 \mu s$ $t_{p} = 10 ms$	≤ 10 ≤ 5 ≤ 1 0.5	W W W	
T _{VJ} T _{VJM} T _{stg}			-40+125 125 -40+125	°C °C °C	
V _{ISOL}	50/60 Hz, RMS I _{ISOL} ≤ 1 mA	t = 1 min t = 1 s	3000 3600	V~ V~	
M _d	Mounting torque	(M5) (10-32 UNF)	2-2.5 18-22	Nm lb.in.	
Weight	typ.		28	g	

Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated. IXYS reserves the right to change limits, test conditions and dimensions.

Features

- · Package with DCB ceramic base plate
- Isolation voltage 3600 V~
- Planar passivated chips
- Soldering terminals
- UL registered E 72873


Applications

- Input rectifier for switch mode power supplies (SMPS)
- · Softstart capacitor charging
- · Electric drives and auxiliaries

Advantages

- · Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling

Dimensions in mm (1 mm = 0.0394")

Symbol	bol Test Conditions Chara			acteristic Values		
I _R , I _D	$V_{R} = V_{RRM}; V_{D} = V_{DRM}$	$T_{VJ} = T_{VJM}$ $T_{VJ} = 25^{\circ}C$	≤ ≤	5 0.3	mA mA	
$\overline{V_F, V_T}$	I _F , I _T = 30 A, T _{VJ} = 25°C		≤	2	V	
V _{T0} r _T	For power-loss calcula (T _{VJ} = 125°C)	itions only		1.1 30	V mΩ	
V _{GT}	$V_D = 6 V;$	T _{vJ} = 25°C	≤	1.0	V	
_		$T_{VJ} = -40^{\circ}C$	≤	1.2	V	
I _{GT}	$V_D = 6 V;$	$T_{VJ}^{N} = 25^{\circ}C$	≤	65	mΑ	
		$T_{VJ}^{N} = -40^{\circ}C$ $T_{VJ}^{N} = 125^{\circ}C$	≤ ≤	80 50	mA mA	

V _{GD}	$\underline{T}_{VJ} = \underline{T}_{VJM};$	$V_D = 2/3 V_{DRM}$	≤	0.2	V	
GD	$T_{VJ} = T_{VJM};$	$V_D = 2/3 V_{DRM}$	≤	5	mA	
I _L	$I_{G} = 0.3 \text{ A}; t_{G} = 30 \mu\text{s}$	T _{v.i} = 25°C	≤	150	mA	
-	$di_{\rm g}/dt = 0.3 \text{ A}/\mu \text{s}$	$T_{VJ}^{VS} = -40^{\circ}C$	≤	200	mΑ	
	•	$T_{VJ}^{0} = 125^{\circ}C$	≤	100	mΑ	
I _H	$T_{VJ} = 25^{\circ}C; V_{D} = 6 V; R_{GK} = \infty$		≤	100	mA	
t _{gd}	$T_{VJ} = 25^{\circ}\text{C}; \ V_{D} = 1/2 \ V_{DRM}$ $I_{G} = 0.3 \ A; \ di_{G}/dt = 0.3 \ A/\mu s$		≤	2	μS	
t	T = 125°C: L = 15 A.	$t_0 = 300 \mu\text{s}, -di/dt = 10 \text{A}$	/us tvp	. 150	μS	
$\mathbf{q}_{_{\mathbf{r}}}$	$V_{R} = 100 \text{ V}, dv/dt = 20$, μο τη ρ	75	μC	
R _{thJC}	per thyristor (diode); D	C current		2.5	K/W	
thac	per module			0.42	K/W	
R_{thJH}	per thyristor (diode); D	C current		3.1	K/W	
uiori	per module			0.52	K/W	
$\overline{d_{s}}$	Creeping distance on	surface		7	mm	
d _A	Creepage distance in air			7	mm	
a	Max. allowable acceleration			50	m/s ²	