

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IGBT Module

VWI 15-12P1

= 18 A

= 1200 V

= 2.3 V

Sixpack in ECO-PAC 2

Conditions

 $T_C = 25^{\circ}C$

 $T_C = 80^{\circ}C$

non-repetitive

 $T_C = 25^{\circ}C$

 $T_{VJ} = 25^{\circ}C$ to $150^{\circ}C$

Preliminary data

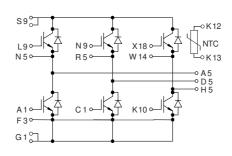
IGBTs

Symbol

 V_{CES}

 V_{GES}

 I_{C25}


I_{C80}

I_{CM}

 $\mathbf{V}_{\mathsf{CEK}}$

P_{tot}

t_{sc} (SCSOA)

Maximum Ratings

1200

± 20

18

14

20

10

90

 V_{CES}

Α

Α

Α

μs

W

Pin arangement see outlines

eatures

NRT IGBT's

- positive temperature coefficient of saturation voltage
- fast switching
- FRED diodes
- fast reverse recovery
- low forward voltage
- Industry Standard Package
- solderable pins for PCB mounting
- isolated DCB ceramic base plate

Symbol Conditions Characteristic Values

 $V_{GE} = \pm 15 \text{ V}; R_{G} = 82 \Omega; T_{VJ} = 125 ^{\circ}\text{C}$

 $V_{CE} = 720 \text{ V}; V_{GE} = \pm 15 \text{ V}; R_{G} = 82 \Omega; T$

RBSOA, Clamped inductive load; L = 100 µ⊭

	$(T_{VJ} = 25^{\circ}C, \text{ unless otherwise specified})$				
		min.	typ.	max.	
V _{CE(sat)}	$I_{c} = 10 \text{ A}; V_{GE} = 15 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.3 2.7	2.7	V
V _{GE(th)}	$I_{\rm C} = 0.4 \text{mA}; V_{\rm GE} = V_{\rm CE}$	4.5		6.5	V
I _{CES}	$V_{CE} = V_{CES};$ $V_{GE} = 0 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		0.8	0.5	mA mA
I _{GES}	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$			200	nA
t _{d(on)} t _r t _{d(off)} t _t E _{on} E _{off}	$\begin{cases} & \text{Inductive load, T}_{\text{VJ}} = 125^{\circ}\text{C} \\ & \text{V}_{\text{CE}} = 600 \text{ V; I}_{\text{C}} = 10 \text{ A} \\ & \text{V}_{\text{GE}} = \pm 15 \text{ V; R}_{\text{G}} = 82 \Omega \end{cases}$		50 40 290 60 1.2 1.1		ns ns ns ns mJ mJ
C _{ies} Q _{Gon}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$ $V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 10 \text{ A}$		600 45		pF nC
R _{thJC} R _{thJH}	(per IGBT) (per IGBT) with heatsink compound		2.7	1.4	K/W K/W

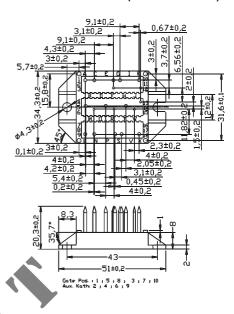
Typical Applications

- AC drives
- · power supplies with power factor correction

IXYS reserves the right to change limits, test conditions and dimensions.

Temperature Sensor NTC

Diodes		
Symbol	Conditions	Maximum Ratings
I _{F25}	$T_C = 25^{\circ}C$ $T_C = 80^{\circ}C$	15 A 10 A


Symbol	Conditions	Cha min.	Characteristic Values min. typ. max.		
			typ.	maxi	
V _F	$I_F = 10 \text{ A}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.6 1.9	3.0 V V	
I _{RM} t _{rr}	$\left. \begin{array}{l} I_{_{F}}=10~A;~di_{_{F}}/dt=-400~A/\mu s;~T_{_{VJ}}=125^{\circ}C\\ V_{_{R}}=600~V;~V_{_{GE}}=0~V \end{array} \right.$		13 110	A ns	
R _{thJC} R _{thJH}	(per diode) (per diode) with heatsink compound		5.0	3.5 K/W K/W	

$\begin{tabular}{c|cccc} Symbol & Conditions & Characteristic Values & min. & typ. & max. \\ \hline R_{25} & $T=25^{\circ}$C & 4.75 & 5.0 & 5.25 & k\Omega \\ $B_{25/50}$ & 3375 & K \\ \hline \end{tabular}$

Component Maximum Ratings **Symbol Conditions** $\frac{\mathsf{T}_{\mathsf{VJ}}}{\mathsf{T}_{\mathsf{stg}}}$ 40...+150 ٥С -40...+125 $^{\circ}\text{C}$ V_{ISOL} $I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}; t = 1 \text{ s}$ 3600 ٧~ M_{d} mounting torque (M4) 1.5 - 2.0Nm 14 - 18 lb.in. Max. allowable acceleration m/s² а

Symbol	Conditions		Characteristic Values		
		min.	typ.	max.	
d _s	Creepage distance on surface (Pin to heatsink)	11.2		mm	
$\mathbf{d}_{\mathtt{A}}$	Strike distance in air (Pin to heatsink)	11.2		mm	
Weight			24	g	

Dimensions in mm (1 mm = 0.0394")

