

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

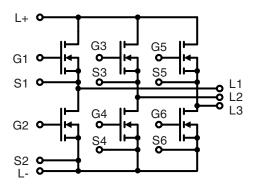
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Three phase full bridge with Trench MOSFETs

 $V_{DSS} = 100 V$ $R_{DSon} = 3.6 m\Omega$ $I_{D25} = 210 A$

MOSFETs							
Symbol	Conditions	Maximum Ratings					
V _{DSS}	$T_{VJ} = 25^{\circ}C$ to $150^{\circ}C$	100 V					
V _{GS}		±20 V					
I _{D25} I _{D80}	$T_C = 25^{\circ}C$ $T_C = 80^{\circ}C$	210 A 170 A					
I _{D25}	$T_C = 25^{\circ}C$ (diode) $T_C = 80^{\circ}C$ (diode)	210 A 170 A					

Symbol	Conditions $(T_{VJ} = 25^{\circ})$		aracteris otherwis		
		min.	typ.	max.	
R _{DSon}	V _{GS} = 10 V; I _D = 100 A		3.6	5.2	$m\Omega$
V_{GSth}	$V_{DS} = 20 \text{ V; } I_{D} = 2 \text{ mA}$	2		4	V
I _{DSS}	$V_{DS} = 100 \text{ V}; V_{GS} = 0 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		0.25	0.02	mA mA
I _{GSS}	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$			0.2	μΑ
\mathbf{Q}_{g} \mathbf{Q}_{gs} \mathbf{Q}_{gd}	$V_{GS} = 10 \text{ V; } V_{DS} = 80 \text{ V; } I_{D} = 200 \text{ A}$		430 90 180		nC nC nC
t _{d(on)} t _r t _{d(off)} t _f	$V_{GS} = 10 \text{ V}; V_{DS} = 50 \text{ V};$ $I_D = 50 \text{ A}; R_G = 2.7 \Omega$		40 100 260 100		ns ns ns
V _F	(diode) $I_F = 100 \text{ A}; V_{GS} = 0 \text{ V}$		1.0	1.5	V
t _{rr}	(diode) $I_F = 40 \text{ A}$; -di/dt = 200 A/ μ s; $V_{DS} = 3$	30 V	100		ns

Applications

AC drives

- in automobiles and trucks
 - electric power steering
 - -starter generator
 - etc...
- in industrial vehicles
 - -propulsion drives
 - -fork lift drives
- in battery supplied equipment

Features

- MOSFETs in trench technology:
 - -low R_{DSon}
 - optimized intrinsic reverse diode
- package:

0.26 K/W

K/W

0.51

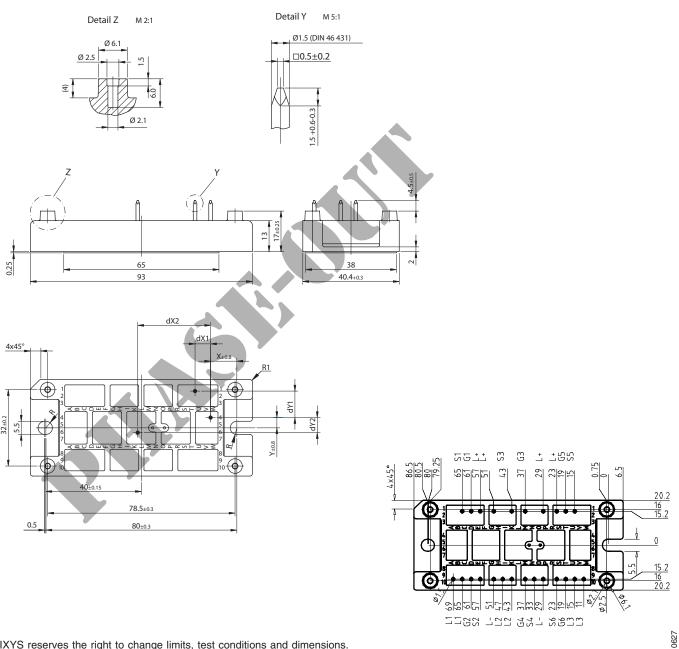
- -high level of integration
- -solder terminals for PCB mounting
- -isolated DCB ceramic base plate with optimized heat transfer

with heat transfer paste

 $\mathbf{R}_{\mathrm{thJC}}$

80

g


Module							
Conditions		Maximum Ratings					
		-40+17 -40+12	•				
I _{ISOL} ≤ 1 mA; 50/60 Hz; t = 1 m	nin	500	0 V~				
Mounting torque (M5)		2 - 2.	5 Nm				
Conditions	$(T_{VJ} = 25^{\circ}C, \text{ unless})$	Characteristic Values = 25°C, unless otherwise specified) min. typ. max.					
	$I_{ISOL} \le 1 \text{ mA}$; 50/60 Hz; t = 1 m Mounting torque (M5)	$I_{ISOL} \le 1$ mA; 50/60 Hz; t = 1 min Mounting torque (M5) Conditions C $(T_{VJ} = 25^{\circ}C, \text{ unless})$	$-40+175 \\ -40+125 \\ I_{ISOL} \le 1 \text{ mA; } 50/60 \text{ Hz; } t = 1 \text{ min} \\ \text{Mounting torque (M5)} \\ \text{\textbf{Conditions}} \\ \text{\textbf{Characteristic}} \\ (T_{VJ} = 25^{\circ}\text{C, unless otherwis}) \\ \text{\textbf{Conditions}} \\ \text{\textbf{Conditions}} \\ \text{\textbf{Characteristic}} \\ \text{\textbf{Conditions}} \\ \text{\textbf{Conditions}} \\ \text{\textbf{Characteristic}} \\ \text{\textbf{Characteristic}} \\ \text{\textbf{Conditions}} \\ \text{\textbf{Characteristic}} \\ \textbf{Characteri$				

Equivalent Circuits for Simulation Thermal Response P_V R_TH1 T_J C_TH1 C_TH2 junction - case (typ.) $C_{th1} = 0.13 \; J/K; \; R_{th1} = 0.08 \; K/W \\ C_{th2} = 0.22 \; J/K; \; R_{th2} = 0.18 \; K/W$

Dimensions in mm (1 mm = 0.0394")

typ.

Weight

