

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

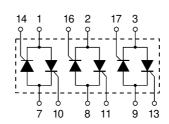
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

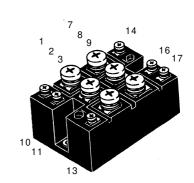
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China




Three Phase AC Controller Modules

 $I_{RMS} = 80/95 A$ $V_{RRM} = 800-1400 V$

Preliminary data

V _{RSM} V _{DSM}	V _{RRM} V _{DRM}	Туре	
800	800	VWO 80-08io7	VWO 95-08io7
1200	1200	VWO 80-12io7	VWO 95-12io7
1400	1400	VWO 80-14io7	VWO 95-14io7

Symbol	Test Conditions	Ma VWO 80	Maximum Ratings VWO 80 VWO 95		
RMS I	$T_{c} = 85^{\circ}C$, 50 - 400 Hz (per phase) $T_{vJ} = T_{vJM}$ $T_{c} = 85^{\circ}C$; (180° sine)	82 59 37	96 69 44	Α	
I _{TAVM}	$T_{VJ} = 45^{\circ}C;$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ $V_{B} = 0$ $t = 8.3 \text{ ms } (60 \text{ Hz}), \text{ sine}$	1000 1100	1150 1230	Α	
	$T_{VJ} = T_{VJM}$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ $V_{B} = 0$ $t = 8.3 \text{ ms } (60 \text{ Hz}), \text{ sine}$	900 1000	1000 1100		
l²t	$T_{VJ} = 45^{\circ}C$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ $V_{R} = 0$ $t = 8.3 \text{ ms } (60 \text{ Hz}), \text{ sine}$	5000 5080	6600 6280		
	$T_{VJ} = T_{VJM}$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ $V_{R} = 0$ $t = 8.3 \text{ ms } (60 \text{ Hz}), \text{ sine}$	4050 4200	5000 5080		
(di/dt) _{cr}	$T_{VJ} = T_{VJM}$ repetitive, $I_T = 150 \text{ A}$ $f = 50 \text{ Hz}$, $t_p = 200 \mu\text{s}$ $V_D = 2/3 V_{DRM}$	100		A/μs	
	$I_{\rm G} = 0.3 {\rm A}$ non repetitive, $I_{\rm T} = I_{\rm TAVM}$ ${\rm di}_{\rm G}/{\rm dt} = 0.3 {\rm A}/{\rm \mu s}$		500		
(dv/dt) _{cr}	$T_{VJ} = T_{VJM};$ $V_{DR} = 2/3 V_{DRM}$ $R_{GK} = \infty;$ method 1 (linear voltage rise)	-	1000		
P _{GM}	$T_{VJ} = T_{VJM}$ $t_p = 30 \mu s$	10		W W	
P _{GAVM}	$I_T = I_{TAVM}$ $t_p = 300 \mu s$		5 0.5		
V _{RGM}			10		
T_{VJ}		-40		°C	
T _{VJM} T _{stg}		-40	125 ⊦125	°C	
V _{ISOL}	50/60 Hz, RMS t = 1 min	2500		V~	
	$I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	3	3000	V~	
\mathbf{M}_{d}	Mounting torque (M5) Terminal connection torque (M3; M5)		5/44±15 % 1.5/13±15 %		
Weight	typ.		180	g	

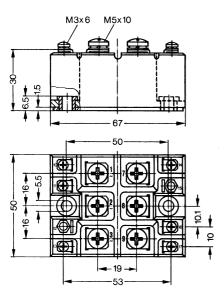
Features

- Thyristor controller for AC (circuit W3C acc. to IEC) for mains frequency
- Package with metal base plate
- Isolation voltage 3000 V~
- Planar passivated chips
- UL applied

Applications

- Switching and control of three phase AC circuits
- · Softstart AC motor controller
- · Solid state switches
- · Light and temperature control

Advantages


- · Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling
- · High power density

Data according to IEC 60747 refer to a single thyristor/diode unless otherwise stated. IXYS reserves the right to change limits, test conditions and dimensions

Symbol	Test Conditions	Characteristic Values VWO 80 VWO 95			
$I_{_{\rm D}},I_{_{\rm R}}$	$T_{VJ} = T_{VJM}; V_{R} = V_{RRM}; V_{D} = V_{DRM}$	≤	5	5	mA
V _T	$I_{T} = 150 \text{ A}; T_{VJ} = 25^{\circ}\text{C}$	≤	1.65	1.57	V
V _{TO}	For power-loss calculations only		0.85 5.2	0.85 4.8	V mΩ
V _{GT}	$V_{D} = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$ $V_{D} = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$	< < < <	1.0 1.6 100 150	1.0 1.6 100 150	V V mA mA
V _{GD}	$T_{VJ} = T_{VJM};$ $V_D = 2/3 V_{DRM}$	<u>-</u> <u><</u> <u><</u>	0.2	0.2	V mA
I _L	$T_{VJ} = 25^{\circ}\text{C}; t_p = 10 \mu\text{s}$ $I_G = 0.3 \text{ A}; di_G/dt = 0.3 \text{ A}/\mu\text{s}$	≤	200	200	mA
I _H	$T_{VJ} = 25^{\circ}C; V_{D} = 6 V; R_{GK} = \infty$	≤	150	150	mA
t _{gd}	$T_{_{VJ}} = 25^{\circ}C; \ V_{_{D}} = 1/2 \ V_{_{DRM}} \ I_{_{G}} = 0.3 \ A; \ di_{_{G}}/dt = 0.3 \ A/\mu s$	≤	2	2	μS
t _q	$T_{_{VJ}} = T_{_{VJM}}; I_{_{T}} = 20 \text{ A}, t_{_{P}} = 200 \mu\text{s};$ $di/dt = -10 \text{ A}/\mu\text{s}$ $V_{_{R}} = 100 \text{ V}; dv/dt = 15 \text{ V}/\mu\text{s}; V_{_{D}} = 2/3$	typ. V _{DRM}	150	150	μS
R _{thJC}	per thyristor; sine 180°el per module		0.81 0.135	0.66 0.11	K/W K/W
R _{thJK}	per thyristor; sine 180°el per module		1.0 0.167	0.93 0.155	K/W K/W
d _s d _a a	Creeping distance on surface Creepage distance in air Max. allowable acceleration		4	3.0 1.5 50	mm mm m/s²

Dimensions in mm (1 mm = 0.0394")

