

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

date 08/22/2013

page 1 of 5

SERIES: VWRAS2-SIP | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- 2 W isolated output
- wide input (2:1)
- industry standard 8 pin SIP package
- dual regulated outputs
- 1,500 V isolation
- short circuit protection
- wide temperature (-40~85°C)
- efficiency up to 79%

MODEL		put	output		tput	output	ripple	efficiency
	typ (Vdc)	ltage range (Vdc)	voltage (Vdc)	min (mA)	rent max (mA)	power max (W)	and noise ¹ max (mVp-p)	typ (%)
VWRAS2-D5-D5-SIP	5	4.5~9	±5	±20	±200	2	100	67
VWRAS2-D5-D9-SIP	5	4.5~9	±9	±11	±111	2	100	71
VWRAS2-D5-D12-SIP	5	4.5~9	±12	±8	±83	2	100	72
VWRAS2-D5-D15-SIP	5	4.5~9	±15	±7	±67	2	100	73
VWRAS2-D12-D5-SIP	12	9~18	±5	±20	±200	2	100	73
VWRAS2-D12-D9-SIP	12	9~18	±9	±11	±111	2	100	74
VWRAS2-D12-D12-SIP	12	9~18	±12	±8	±83	2	100	78
VWRAS2-D12-D15-SIP	12	9~18	±15	±7	±67	2	100	77
VWRAS2-D24-D5-SIP	24	18~36	±5	±20	±200	2	100	76
VWRAS2-D24-D9-SIP	24	18~36	±9	±11	±111	2	100	78
VWRAS2-D24-D12-SIP	24	18~36	±12	±8	±83	2	100	79
VWRAS2-D24-D15-SIP	24	18~36	±15	±7	±67	2	100	78
VWRAS2-D48-D5-SIP	48	36~72	±5	±20	±200	2	100	75
VWRAS2-D48-D9-SIP	48	36~72	±9	±11	±111	2	100	78
VWRAS2-D48-D12-SIP	48	36~72	±12	±8	±83	2	100	79
VWRAS2-D48-D15-SIP	48	36~72	±15	±7	±67	2	100	79

Notes: 1. ripple and noise are measured at 20 MHz BW

PART NUMBER KEY

WWRAS2 - DXX - DXX - SIP

Base Number Input Voltage Output Voltage Packaging Style

INPUT

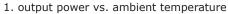
parameter	conditions/description	min	typ	max	units
operating input voltage	5 V model	4.5	5	9.0	Vdc
	12 V model	9.0	12	18.0	Vdc
	24 V model	18.0	24	36.0	Vdc
	48 V model	36.0	48	72.0	Vdc

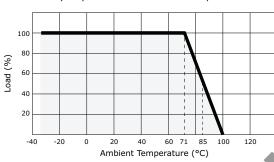
OUTPUT

parameter	conditions/description	min	typ	7	max	units
line regulation	input voltage from low to high		±0.2		±0.5	%
load regulation	measured from 10% load to full load		±0.5		±1.0	%
voltage accuracy	input voltage range refer to output load		±1		±3	%
switching frequency	100% load, input voltage range	180			500	kHz
temperature coefficient			±0.03		7	%/°C

PROTECTIONS

parameter	conditions/description		min	typ	max	units
short circuit protection	continuous					

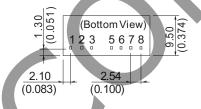

SAFETY AND COMPLIANCE

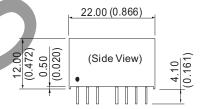

parameter	conditions/descrip	tion	min	typ	max	units
isolation voltage	for 1 minute at 1 mA	max.	1,500			Vdc
isolation resistance	at 500 Vdc		1,000			ΜΩ
MTBF			1,000,000			hours
RoHS compliant	yes					

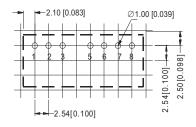
ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature		-40		85	°C
storage temperature		-50		125	°C
storage humidity	non-condensing			95	%
temperature rise	at full load		15	35	°C
lead temperature	1.5 mm from case for 10 seconds			300	°C

DERATING CURVES



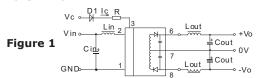

MECHANICAL


parameter	conditions/description		min	typ	max	units
dimensions	0.866 x 0.374 x 0.472 (22.00 x 9.50 x 12.	00 mm)				inch
case material	plastic (UL94-V0)					
weight				5.5		g

MECHANICAL DRAWING

units: mm [inches] tolerance: ± 0.25 [± 0.010] pin section tolerance: ± 0.10 mm [± 0.004]

PIN CONNECTIONS					
PIN	FUNCTION				
1	GND				
2	+Vin				
3	CTRL				
5	NC				
6	+Vo				
7	0 V				
8	-Vo				


CTRL Terminal

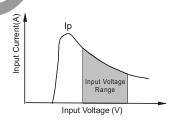
When open or high impedance, the converter work well; When this pin is 'high'; the converter shutdown; It should be noted that the input current (Ic) should between 5-10mA, exceeding the maximum 20mA will cause permanent damage to the converter. The value of R can be derived as follows:

$$R = \frac{V_C - V_D - 1.0}{I_C}$$

Recommended Circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).

	Vin (Vdc)	Cin (µF)	Lin (µH)	Cout (µF)	Lout (µH)
	5	100	4.7~120	100	2.2~10
	12	100	4.7~120	100	2.2~10
ì	24	10~22	4.7~120	100	2.2~10
	48	10~22	4.7~120	100	2.2~10


However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. To ensure safe and reliable operation see Table 1 for the maximum capacitance of each channel of output.

	Vout (Vdc)	Cout (µF)
Table 1	±5	560
	±9	470
	±12	330
	±15	270

Input Curent

While using unstable power source, please ensure the output voltage and ripple voltage do not exceed indexes of the converter. The preceding power source must be able to provide for converter sufficient starting current Ip.

General: Ip ≤1.4*Iin-max

No parallel connection or plug and play

REVISION HISTORY

rev.	description	date
1.0	initial release	11/10/2010
1.01	new template applied	04/16/2012
1.02	V-Infinity branding removed	09/10/2012
1.03	updated recommended circuit table	02/19/2013
1.04	corrected input voltage range data, updated spec	08/22/2013

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.