# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





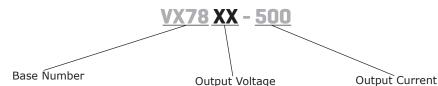
# SERIES: VX78-500 | DESCRIPTION: NON-ISOLATED DC SWITCHING REGULATOR

#### FEATURES

- wide input
- pin-out compatible with linear regulators
- encapsulated
- UL & CSA approved
- high efficiency up to 95%
- no-load input current as low as 0.2 mA
- wide operating temp: -40°C to +85°C
- supports negative output
- short circuit protection on the output



| ROHS |  | C | E |
|------|--|---|---|
|------|--|---|---|


| MODEL       |                     | nput<br>Itage <sup>1</sup> | output<br>voltage | output<br>current  | output<br>power | ripple<br>& noise <sup>2</sup> | efficiency <sup>3</sup> |
|-------------|---------------------|----------------------------|-------------------|--------------------|-----------------|--------------------------------|-------------------------|
|             | <b>typ</b><br>(Vdc) | range<br>(Vdc)             | (Vdc)             | <b>max</b><br>(mA) | max<br>(W)      | <b>max</b><br>(mVp-p)          | <b>typ</b><br>(%)       |
| VX7803-500  | 24                  | 4.75~36                    | 3.3               | 500                | 1.65            | 75                             | 86                      |
| VX7805-500  | 24<br>12            | 6.5~36<br>7~31             | 5<br>-5           | 500<br>-300        | 2.5<br>1.5      | 75<br>75                       | 90<br>80                |
| VX78039-500 | 24                  | 12~36                      | 9                 | 500                | 4.5             | 75                             | 93                      |
| VX78012-500 | 24<br>12            | 15~36<br>8~24              | 12<br>-12         | 500<br>-150        | 6<br>1.8        | 75<br>75                       | 94<br>84                |
| VX7815-500  | 24<br>12            | 19~36<br>8~21              | 15<br>-15         | 500<br>-150        | 7.5<br>2.25     | 75<br>75                       | 95<br>85                |

Notes: 1. For input voltages higher than 30 Vdc, a 22  $\mu$ F / 50 V input capacitor is required.

2. Tested at nominal input, 10 $\times$ 100% load, 20 MHz bandwidth, with 10  $\mu$ F electrolytic and 1  $\mu$ F ceramic capacitor on the output. At loads below 10%, the max ripple and noise of the 3.3 & 5 Vdc outputs will be 150 mVp-p, and the other outputs will be 2% Vo. 3. Measured at min Vin, full load.

4. All specifications are measured at Ta=25°C, humidity < 75%, nominal input voltage, and rated output load unless otherwise specified.

#### **PART NUMBER KEY**



#### **INPUT**

| parameter                            | conditions/description                                            | min       | typ      | max      | units      |
|--------------------------------------|-------------------------------------------------------------------|-----------|----------|----------|------------|
| operating input voltage <sup>1</sup> | for positive output applications for negative output applications | 4.75<br>7 | 24<br>12 | 36<br>31 | Vdc<br>Vdc |
| filter                               | capacitor filter                                                  |           |          |          |            |
| input reverse polartiy protection    | no                                                                |           |          |          |            |
| no-load input current                | positive outputs                                                  |           | 0.2      | 1.5      | mA         |

Note: 1. See Model section on page 1 for specific input voltage ranges.

#### OUTPUT

| parameter                            | conditions/description                         | min | typ  | max   | units |
|--------------------------------------|------------------------------------------------|-----|------|-------|-------|
| maximum capacitive load <sup>2</sup> | for positive output applications               |     |      | 680   | μF    |
|                                      | for negative output applications               |     |      | 330   | μF    |
|                                      | at full load, input voltage range              |     |      |       |       |
| voltage accuracy                     | 3.3 Vdc output model                           |     | ±2   | ±4    | %     |
|                                      | all other models                               |     | ±2   | ±3    | %     |
| line regulation                      | at full load, input voltage range              |     | ±0.2 | ±0.4  | %     |
| load regulation                      | at nominal input, 10~100% load                 |     | ±0.4 | ±0.6  | %     |
| switching frequency                  | at nominal input voltage, full load            | 550 |      | 850   | kHz   |
| transient recovery time              | at nominal input voltage, 25% load step change |     | 0.2  | 1     | ms    |
| transient response deviation         | at nominal input voltage, 25% load step change |     | 50   | 250   | mV    |
| temperature coefficient              | at full load                                   |     |      | ±0.03 | %/°C  |

Note: 2. The maximum capacitive load was tested at nominal input voltage, full load.

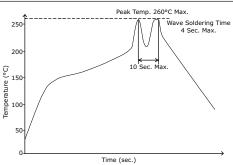
#### PROTECTIONS

| parameter                | conditions/description    | min | typ | max | units |
|--------------------------|---------------------------|-----|-----|-----|-------|
| short circuit protection | continuous, auto recovery |     |     |     |       |

#### **SAFETY AND COMPLIANCE**

.....

| parameter           | conditions/description                      | min                         | typ           | max    | units |
|---------------------|---------------------------------------------|-----------------------------|---------------|--------|-------|
| safety approvals    | UL 60950-1                                  |                             |               |        |       |
| EMI/EMC             | EN 55032, EN 55024                          |                             |               |        |       |
| conducted emissions | CISPR22/EN55022, class B (external circ     | uit required, see Figure 6  | 5-b)          |        |       |
| radiated emissions  | CISPR22/EN55022, class B (external circ     | uit required, see Figure 6  | 5-b)          |        |       |
| ESD                 | IEC/EN61000-4-2, contact $\pm$ 4kV, class E |                             |               |        |       |
| radiated immunity   | IEC/EN61000-4-3, 10V/m, class A             |                             |               |        |       |
| EFT/burst           | IEC/EN61000-4-4, ± 1kV, class B (exterr     | al circuit required, see F  | igure 6-a)    |        |       |
| surge               | IEC/EN61000-4-5, line-line $\pm$ 1kV, class | 3 (external circuit require | ed, see Figur | e 6-a) |       |
| conducted immunity  | IEC/EN61000-4-6, 3 Vr.m.s, class A          |                             |               |        |       |
| MTBF                | as per MIL-HDBK-217F, 25°C                  | 2,000,000                   |               |        | hours |
| RoHS                | 2011/65/EU                                  |                             |               |        |       |


.....

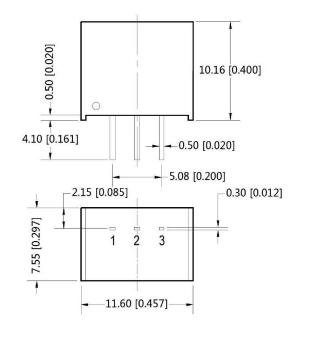
#### **ENVIRONMENTAL**

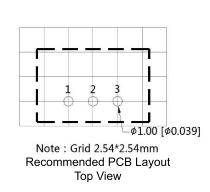
| parameter             | conditions/description | min | typ | max | units |
|-----------------------|------------------------|-----|-----|-----|-------|
| operating temperature | see derating curve     | -40 |     | 85  | °C    |
| storage temperature   |                        | -55 |     | 125 | °C    |
| storage humidity      | non-condensing         | 5   |     | 95  | %     |

#### **SOLDERABILITY**

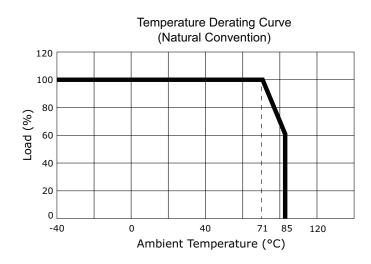
| parameter      | conditions/description     | min | typ | max | units |
|----------------|----------------------------|-----|-----|-----|-------|
| wave soldering | see wave soldering profile |     |     | 260 | °C    |




# **MECHANICAL**

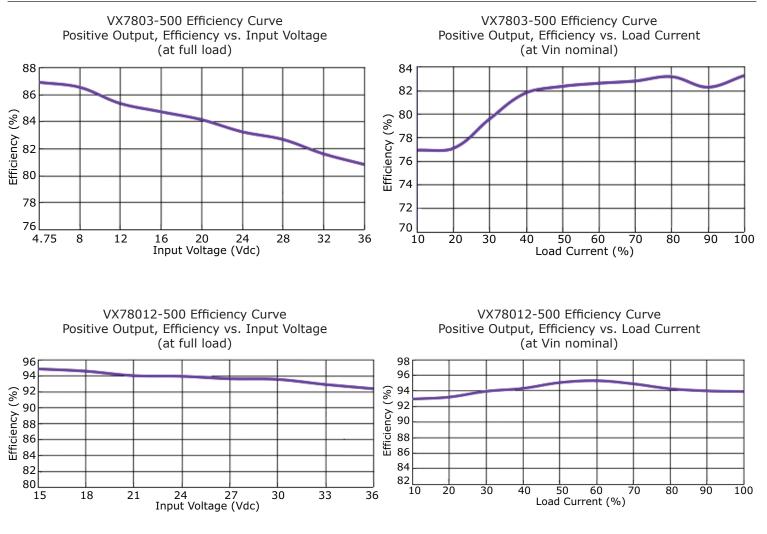

| parameter     | conditions/description                             | min | typ | max | units |
|---------------|----------------------------------------------------|-----|-----|-----|-------|
| dimensions    | 11.60 x 7.55 x 10.16 [0.457 x 0.297 x 0.400 inch]  |     |     |     | mm    |
| case material | black flame-retardant heat-proof plastic (UL94V-0) |     |     |     |       |
| weight        |                                                    |     | 1.8 |     | g     |

# **MECHANICAL DRAWING**


units: mm [inch] tolerance:  $\pm 0.25[\pm 0.010]$ pin diameter tolerance:  $\pm 0.10[\pm 0.004]$ 

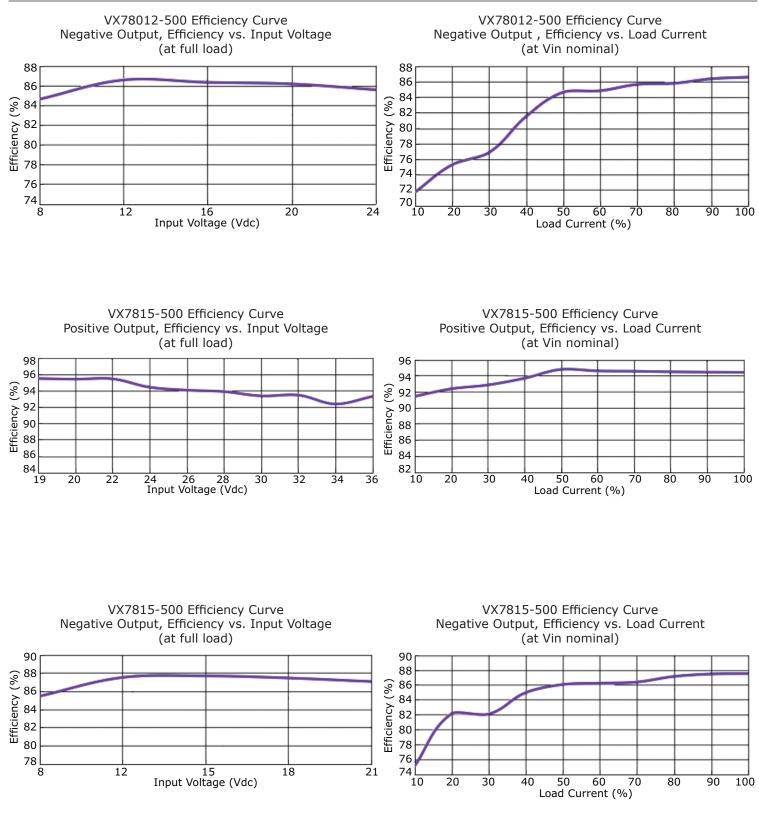
| PIN CONNECTIONS |         |         |  |  |
|-----------------|---------|---------|--|--|
| PIN             | +OUTPUT | -OUTPUT |  |  |
| 1               | +VIN    | +VIN    |  |  |
| 2               | GND     | -VOUT   |  |  |
| 3               | +VOUT   | GND     |  |  |



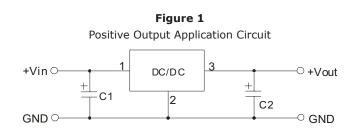



#### **DERATING CURVE**




#### **EFFICIENCY CURVES**

.....




cui.com

# **EFFICIENCY CURVES (CONTINUED)**



# **TYPICAL APPLICATION CIRCUIT**





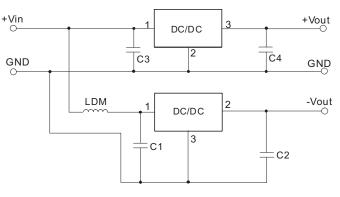



Figure 4

Vout

C2

22µF

3

Positive Output Ripple Reduction Circuit

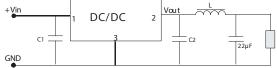

DC/DC

Figure 2 Negative Output Application Circuit +Vin  $\bigcirc$  1 DC/DC 2  $\bigcirc$  -Vout GND  $\bigcirc$  GND

Table 1External Capacitor Table

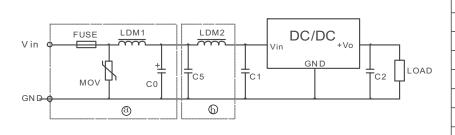
| Model Number | C1, C3<br>(ceramic capacitor) | C2, C4<br>(ceramic capacitor) |
|--------------|-------------------------------|-------------------------------|
| VX7803-500   | 10 µF/50 V                    | 22 µF/10 V                    |
| VX7805-500   | 10 µF/50 V                    | 22 µF/10 V                    |
| VX78039-500  | 10 µF/50 V                    | 22 µF/16 V                    |
| VX78012-500  | 10 µF/50 V                    | 22 µF/25 V                    |
| VX7815-500   | 10 µF/50 V                    | 22 µF/25 V                    |

Figure 5 Negative Output Ripple Reduction Circuit



#### **EMC RECOMMENDED CIRCUIT**

C1


+Vin

GND

Note:

.....

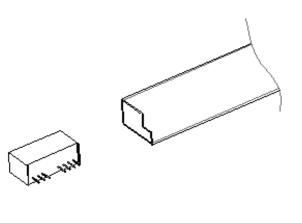




| Table 2 |  |
|---------|--|
|---------|--|

| Recommended external circuit components |                                          |  |
|-----------------------------------------|------------------------------------------|--|
| FUSE                                    | choose according to actual input current |  |
| MOV                                     | S20K30                                   |  |
| LDM1                                    | 82 μH                                    |  |
| C0                                      | 680 μF/50 V                              |  |
| C1, C2                                  | see Table 1                              |  |
| C5                                      | 4.7 μF/50 V                              |  |
| LDM2                                    | 12 µH                                    |  |
|                                         |                                          |  |

1. C1 & C2 (C3 & C4) are required and should be connected as close to the module pins as possible.


- To reduce the output ripple further, it is recommended to connect an "LC" filter at the output terminal with a recommended value of 10~47 µH for the L component. (See Figures 4 & 5).
  - 3. When using application circuit in Figure 3, a 10 µH LDM component is recommended to reduce the interference.

# PACKAGING

units: mm

Tube Size: 9.6 x 16.9 x 530 mm QTY: 43 pcs





.....

#### **REVISION HISTORY**

| rev. | description     | date       |
|------|-----------------|------------|
| 1.0  | initial release | 05/18/2017 |

The revision history provided is for informational purposes only and is believed to be accurate.



.....

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 **cui**.com techsupport@cui.com

.....

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

.....

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.