

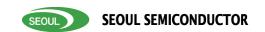
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

X42180-07

Z-Power series is designed for high current operation and high flux output applications.

Z-Power LED's thermal performance exceeds other power LED solutions.

It incorporates state of the art SMD design and Thermal emission material.

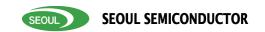
Z Power LED is ideal light sources for general illumination applications, custom designed solutions, automotive and large LCD backlights.

X42180-07

Features

- Super high flux output and high luminance
- Designed for high current operation
- Low thermal resistance
- SMT solderable
- Lead free product
- RoHS compliant

Applications


- Mobile phone flash
- Automotive interior / Exterior lighting
- Automotive signal lighting
- Automotive forward lighting
- Torch
- Architectural lighting
- LCD TV / Monitor backlight
- Projector light source
- Traffic signals
- Task lighting
- Decorative / Pathway lighting
- Remote / Solar powered lighting
- Household appliances

*The appearance and specifications of the product may be changed for improvement without notice.

Rev. 20

FEBRUARY. 2013

www.seoulsemicon.com

Full Code of Z-Power LED Series

Full code form: $X_1 X_2 X_3 X_4 X_5 X_6 X_7 - X_8 X_9 - X_{10} X_{11} X_{12} X_{13} X_{14}$

1. Part Number

- X₁: Color
- X₂: Z-Power LED series number
- X₃: LENS type
- X₄: Chip quantity (or Power Dissipation)
- X₅: Package outline size
- X₆: Type of PCB
- X₇: Grade of characteristic code

2. Internal Number

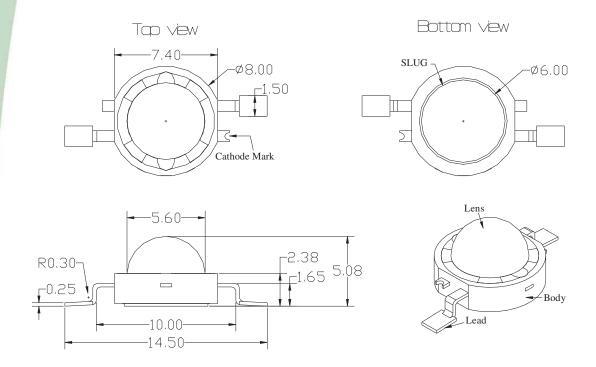
- X₈, X₉: Revision No.

3. Code Labeling

- X₁₀: Luminous flux (or Radiant flux for royal blue)
- X₁₁ X₁₂ X₁₃: Dominant wavelength (or x,y coordinates rank code)
- X₁₄: Forward voltage

4. Sticker Diagram on Reel & Aluminum Vinyl Bag

For more information about binning and labeling, refer to the Application Note -1


Rev. 20

www.seoulsemicon.con

Outline Dimension

1. Dome Type

Notes:

- 1. All dimensions are in millimeters. (tolerance : ± 0.2)
- 2. Scale : none3. Slug of package is connected to anode.

*The appearance and specifications of the product may be changed for improvement without notice.

1. Pure White (W42180-07)

1-1 Electro-Optical characteristics at I_F =350mA, T_A =25°C

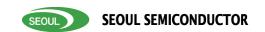
Parameter		Symbol	Value			Unit
Parameter			Min	Тур	Max	Onit
Luminous Flux [1]	T rank	Φ _V [2]	70	80	91	lm
Luminous Flux [1]	U rank	Φ _V [2]	91	108	118.5	lm
Correlated Color Temper	ature [3]	CCT	-	6300	-	K
CRI		R_a	-	73	-	-
Forward Voltage [4	1]	V_{F}	-	3.1	-	V
View Angle		20 ½		127		deg.
Thermal resistance ^[5]		Rθ _{J-B}	10.1			°C/W
Thermal resistance	[6]	Rθ _{J-C}		8.5		°C/W

1-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	I_{F}	800	mA
Power Dissipation	P_d	3.28	W
Junction Temperature	T _j	145	°C
Operating Temperature	T_{opr}	-40 ~ +85	°C
Storage Temperature	T_{stg}	-40 ~ +100	°C
ESD Sensitivity [7]	-	$\pm 10,000$ V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT $\pm 5\%$ tester tolerance.
- [4] A tolerance of $\pm 0.06V$ on forward voltage measurements
- [5], [6] R $\theta_{\text{J-B}}$ is measured with a SSC metal core pcb.(25 °C \leq T $_{\text{J}} \leq$ 110 °C) R $\theta_{\text{J-C}}$ is measured with only emitter.(25 °C \leq T $_{\text{J}} \leq$ 110 °C)
- [7] It is included the zener chip to protect the product from ESD.


------Caution-----

1. Please do not drive at rated current more than 5 sec. without proper heat sink.

Rev. 20

FEBRUARY. 2013

www.seoulsemicon.com

2. Warm White (N42180-07)

2-1 Electro-Optical characteristics at I_F =350mA, T_A =25°C

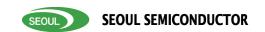
Parameter	Symbol	Value			l l m i d
Farameter		Min	Тур	Max	Unit
Luminous Flux [1]	Φ _V [2]	-	72	-	lm
Correlated Color Temperature [3]	CCT	-	3000	-	К
CRI	R _a	-	93	-	-
Forward Voltage [4]	V_{F}	-	3.1	-	V
View Angle	20 1/2	126		deg.	
Thermal resistance [5]	Rθ _{J-B}	10.1		°C/W	
Thermal resistance [6]	Rθ _{J-C}		8.5		°C/W

2-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	I_{F}	800	mA
Power Dissipation	P_d	3.28	W
Junction Temperature	T _j	145	oC.
Operating Temperature	T_{opr}	-40 ~ +85	°C
Storage Temperature	T_{stg}	-40 ~ +100	°C
ESD Sensitivity [7]	-	$\pm 10,000$ V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT $\pm 5\%$ tester tolerance
- [4] A tolerance of $\pm 0.06V$ on forward voltage measurements
- [5], [6] $R\theta_{J-B}$ is measured with a SSC metal core pcb.(25 °C \leq T $_{J} \leq$ 110 °C) $R\theta_{J-C}$ is measured with only emitter.(25 °C \leq T $_{J} \leq$ 110 °C)
- [7] It is included the zener chip to protect the product from ESD.


-----Caution-----

1. Please do not drive at rated current more than 5 sec. without proper heat sink

Rev. 20

FEBRUARY. 2013

www.seoulsemicon.com

3. Warm White (N42180H-07)

3-1 Electro-Optical characteristics at I_F =350mA, T_A =25°C

Parameter	Cumbal	Value			Unit
Parameter	Symbol	Min	Тур	Max	Onit
Luminous Flux [1]	Φ _V [2]	-	90	-	lm
Correlated Color Temperature [3]	CCT	-	3000	-	K
CRI	R_a	-	80	-	-
Forward Voltage ^[4]	V_{F}	-	3.1	-	V
View Angle	20 1/2	127		deg.	
Thermal resistance ^[5]	Rθ _{J-B}	10.1		°C /W	
Thermal resistance [6]	Rθ _{J-C}		8.5		°C/W

3-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	I_{F}	800	mA
Power Dissipation	P_d	3.28	W
Junction Temperature	T _j	145	oC
Operating Temperature	T_{opr}	-40 ~ +85	oC.
Storage Temperature	T_{stg}	-40 ~ +100	oC.
ESD Sensitivity [7]	-	$\pm 10,000$ V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an iintegrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT $\pm 5\%$ tester tolerance
- [4] A tolerance of $\pm 0.06 \mbox{V}$ on forward voltage measurements
- [5], [6] $R\theta_{J-B}$ is measured with a SSC metal core pcb.(25 °C \leq T $_{J} <math>\leq$ 110 °C) $R\theta_{J-C}$ is measured with only emitter.(25 °C \leq T $_{J} <math>\leq$ 110 °C)
- [7] It is included the zener chip to protect the product from ESD.

-----Caution-----

1. Please do not drive at rated current more than 5 sec. without proper heat sink

Rev. 20

FEBRUARY. 2013

www.seoulsemicon.com

4. Natural White (S42180-07)

4-1 Electro-Optical characteristics at I_F =350mA, T_A =25°C

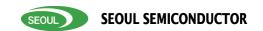
Parameter	Sumbal	Value			Unit
Farameter	Symbol	Min	Тур	Max	Onit
Luminous Flux [1]	Φ _V ^[2]	-	76	-	lm
Correlated Color Temperature [3]	ССТ	-	4000	-	K
CRI	R_a	-	93	-	-
Forward Voltage ^[4]	V_{F}	-	3.1	-	V
View Angle	20 1/2	126		deg.	
Thermal resistance ^[5]	Rθ _{J-B}	10.1		°C/W	
Thermal resistance [6]	Rθ _{J-C}		8.5		°C/W

4-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	I_{F}	800	mA
Power Dissipation	P_d	3.28	W
Junction Temperature	T _j	145	oC
Operating Temperature	T_{opr}	-40 ~ +85	oC.
Storage Temperature	T_{stg}	-40 ~ +100	oC.
ESD Sensitivity [7]	-	$\pm 10,000$ V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT $\pm 5\%$ tester tolerance.
- [4] A tolerance of ± 0.06 V on forward voltage measurements
- [5], [6] $R\theta_{J-B}$ is measured with a SSC metal core pcb.(25 °C \leq T $_{J} \leq$ 110 °C) $R\theta_{J-C}$ is measured with only emitter. (25 °C \leq T $_{J} \leq$ 110 °C)
- [7] It is included the zener chip to protect the product from ESD.


-----Caution-----

1. Please do not drive at rated current more than 5 sec. without proper heat sink

Rev. 20

FEBRUARY. 2013

www.seoulsemicon.com

5. Natural White (S42180H-07)

5-1 Electro-Optical characteristics at I_F =350mA, T_A =25°C

Parameter	Symbol	Value			Unit
Farameter	Symbol	Min	Тур	Max	Onit
Luminous Flux [1]	Φ _V [2]	-	98	-	lm
Correlated Color Temperature [3]	CCT	-	4000	-	K
CRI	R_a	-	80	-	-
Forward Voltage ^[4]	V_{F}	-	3.1	-	V
View Angle	20 1/2	127		deg.	
Thermal resistance ^[5]	Rθ _{J-B}	10.1		°C/W	
Thermal resistance ^[6]	Rθ _{J-C}		8.5		°C/W

5-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	I_{F}	800	mA
Power Dissipation	P_d	3.28	W
Junction Temperature	T _j	145	oC
Operating Temperature	T_{opr}	-40 ~ +85	oC.
Storage Temperature	T_{stg}	-40 ~ +100	oC.
ESD Sensitivity [7]	-	$\pm 10,000$ V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT $\pm 5\%$ tester tolerance.
- [4] A tolerance of ± 0.06 V on forward voltage measurements
- [5], [6] $R\theta_{J-B}$ is measured with a SSC metal core pcb.(25 °C \leq T $_{J} \leq$ 110 °C) $R\theta_{J-C}$ is measured with only emitter. (25 °C \leq T $_{J} \leq$ 110 °C)
- [7] It is included the zener chip to protect the product from ESD.

-----Caution-----

1. Please do not drive at rated current more than 5 sec. without proper heat sink

Rev. 20

FEBRUARY. 2013

www.seoulsemicon.com

6. Blue (B42180-07)

6-1 Electro-Optical characteristics at I_F=350mA, T_A=25°C

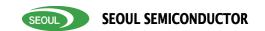
Parameter	Symbol	Value			Unit
Farameter	Symbol	Min	Тур	Max	Ollit
Luminous Flux [1]	Φ _V [2]	-	22	-	lm
Dominant Wavelength ^[3]	λ_{D}	455	465	475	nm
Forward Voltage ^[4]	V_{F}	-	3.2	-	V
View Angle	20 1/2		130		deg.
Thermal resistance [5]	Rθ _{J-B}		10.1		°C/W
Thermal resistance ^[6]	Rθ _{J-C}		8.5		°C/W

6-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	${ m I}_{\sf F}$	800	mA
Power Dissipation	P_d	3.28	W
Junction Temperature	T _j	145	oC
Operating Temperature	T_{opr}	-40 ~ +85	oC
Storage Temperature	T _{stg}	-40 ~ +100	٥C
ESD Sensitivity [7]	-	$\pm 10,000$ V HBM	-

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total luminous flux output as measured with an integrating sphere.
- [3] Dominant wavelength is derived from the CIE 1931 Chromaticity diagram. A tolerance of ± 0.5 nm for dominant wavelength
- [4] A tolerance of $\pm 0.06V$ on forward voltage measurements
- [5], [6] $R\theta_{J-B}$ is measured with a SSC metal core pcb.(25 °C \leq T $_{J} \leq$ 110 °C) $R\theta_{J-C}$ is measured with only emitter.(25 °C \leq T $_{J} \leq$ 110 °C)
- [7] It is included the zener chip to protect the product from ESD.


-----Caution-----

- 1. Please do not drive at rated current more than 5 sec. without proper heat sink
- 2. Blue power light sources represented here are in risk group2(Medium) according to IEC 62471

Rev. 20

FEBRUARY. 2013

www.seoulsemicon.com

7. Royal Blue (D42180-07)

7-1 Electro-Optical characteristics at $I_F=350$ mA, $T_A=25$ °C

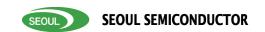
Parameter	Symbol	Value			Unit
		Min	Тур	Max	Onit
Radiant Power [1]	Φ _V [2]	-	468	-	mW
Dominant Wavelength [3]	λ_{D}	455	457	460	nm
Forward Voltage ^[4]	V_{F}	-	3.2	-	V
View Angle	20 1/2		130		deg.
Thermal resistance [5]	Rθ _{J-B}		10.1		°C /W
Thermal resistance ^[6]	Rθ _{J-C}		8.5		°C /W

7-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Forward Current	${ m I}_{ m F}$	800	mA	
Power Dissipation	P _d	3.28	W	
Junction Temperature	T_{j}	145	°C	
Operating Temperature	T_{opr}	-40 ~ +85	°C	
Storage Temperature	T _{stg}	-40 ~ +100	°C	
ESD Sensitivity [7]	-	$\pm 10,000$ V HBM	-	

*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_{V} is the total Radiant power output as measured with anintegrating sphere.
- [3] Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. CCT $\pm 5\%$ tester tolerance
- [4] A tolerance of $\pm 0.06V$ on forward voltage measurements
- [5], [6] $R\theta_{J-B}$ is measured with a SSC metal core pcb.(25 °C \leq T $_{J}$ \leq 110 °C) $R\theta_{J-C}$ is measured with only emitter.(25 °C \leq T $_{J}$ \leq 110 °C)
- [7] It is included the zener chip to protect the product from ESD.


-----Caution-----

- 1. Please do not drive at rated current more than 5 sec. without proper heat sink
- 2. Blue power light sources represented here are in risk group2(Medium) according to IEC 62471

Rev. 20

FEBRUARY. 2013

www.seoulsemicon.com

8. Photosynthetic Red (P42180-07)

11-1 Electro-Optical characteristics at I_F =350mA, T_A =25°C

Parameter	Symbol	Value			Unit
		Min	Тур	Max	Unit
Radiant Power [1]	Φ _V ^[2]	150	240	280	mW
Peak Wavelength ^[3]	λ_{P}	655	660	665	nm
Forward Voltage ^[4]	V_{F}	2.0	2.4	3.0	V
View Angle	20 1/2		130		deg.
Thermal resistance [5]	Rθ _{J-C}		9	·	°C/W

11-2 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	I_{F}	700	mA
Power Dissipation	P_d	2.1	W
Junction Temperature	T_{j}	125	oC
Operating Temperature	T_{opr}	-40 ~ +85	oC
Storage Temperature	T_{stg}	-40 ~ +100	°C
ESD Sensitivity [6]	-	$\pm 10,000$ V HBM	-

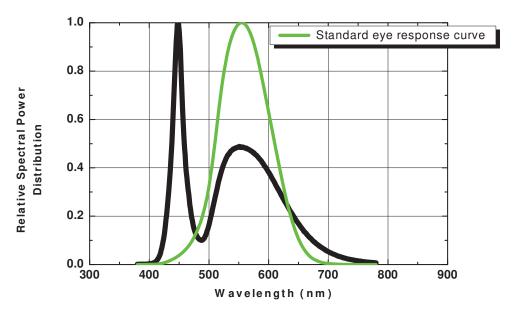
*Notes:

- [1] SSC maintains a tolerance of $\pm 10\%$ on flux and power measurements.
- [2] Φ_V is the total Radiant power output as measured with an integrating sphere.
- [3] Peak wavelength is derived from the CIE 1931 Chromaticity diagram. A tolerance of ± 1 nm for peak wavelength
- [4] A tolerance of $\pm 0.06V$ on forward voltage measurements
- [5] $R\theta_{\mbox{\scriptsize J-C}}$ is measured with only emitter.
- [6] It is included the zener chip to protect the product from ESD.

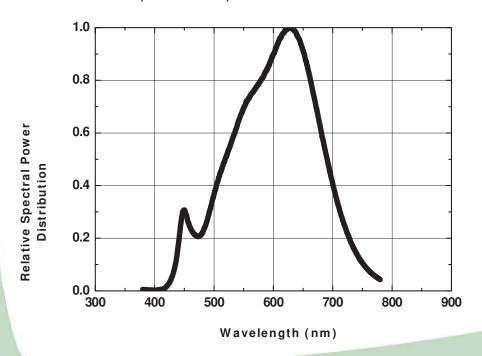
-----Caution-----

1. Please do not drive at rated current more than 5 sec. without proper heat sink

nev. Zu


FEBRUARY. 2013

www.seoulsemicon.com

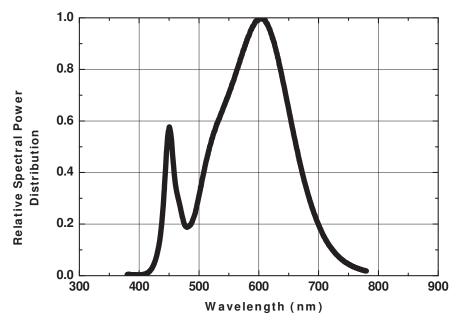


Color Spectrum, T_A= 25 º C

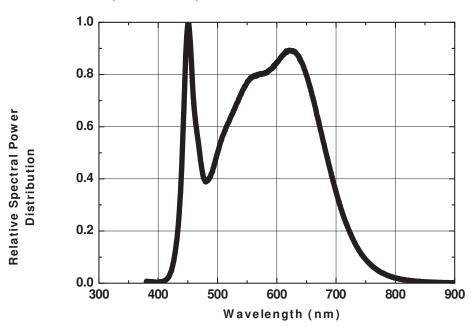
1. Pure White(W42180-07)

2. Warm White (N42180-07)

Rev. 20


FEBRUARY, 2013

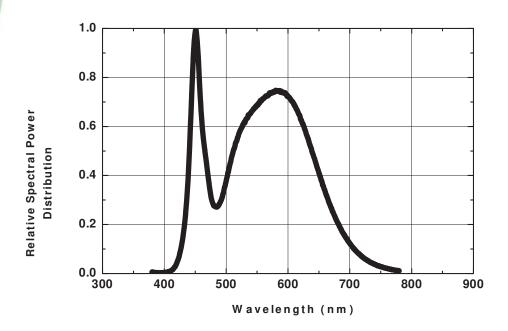
www.seoulsemicon.com



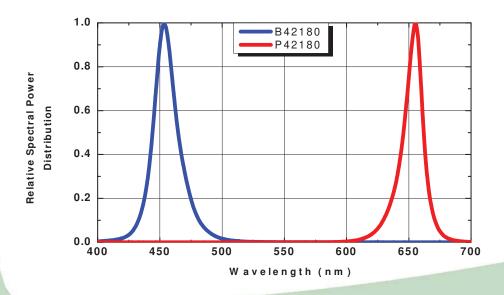
Color Spectrum, T_A= 25 º C

3. Warm White (N42180H-07)

4. Natural White (S42180-07)


Rev. 20

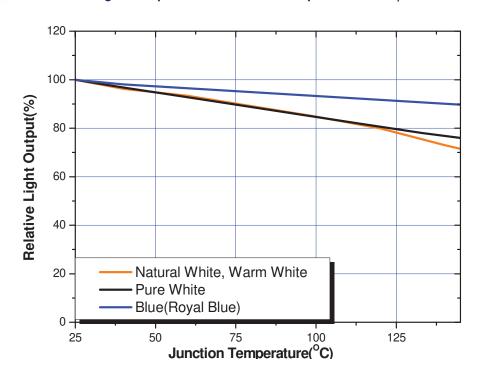
I EDITORITI. 2010

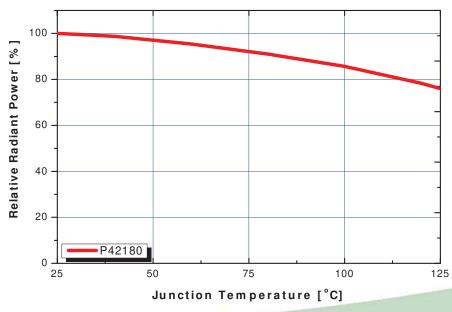


Color Spectrum, T_A= 25 º C

5. Natural White (S42180H)

6. Blue(Royal Blue), Photosynthetic Red

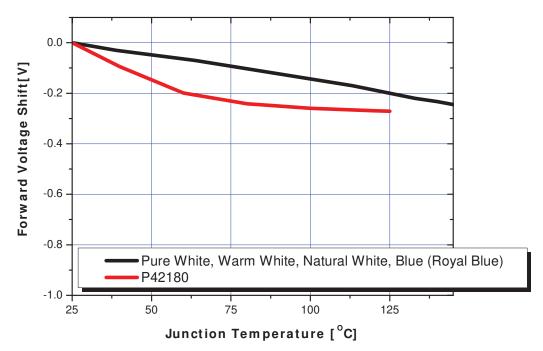

nev. 20


www.seoulsemicon.com

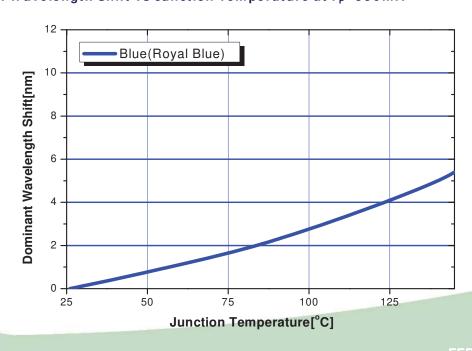
Junction Temperature Characteristics

1. Relative Light Output vs. Junction Temperature at $I_F = 350 \, \text{mA}$

Rev. 20


FEBRUARY. 2013

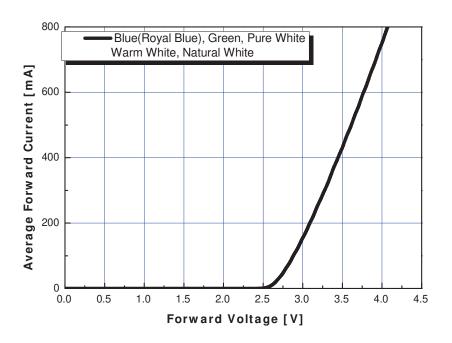
www.seoulsemicon.com

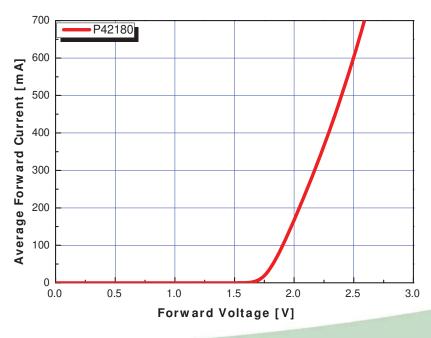


Junction Temperature Characteristics

2. Forward Voltage Shift vs. Junction Temperature at I $_{\rm F}$ = 350 mA

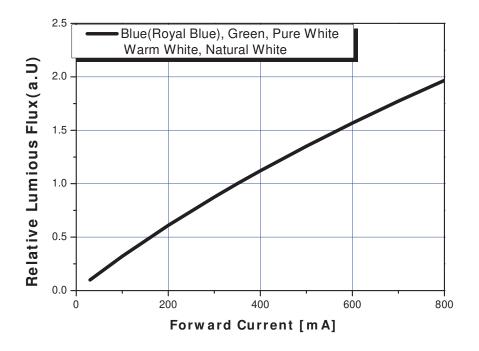
3. Wavelength Shift vs Junction Temperature at I $_{\text{F}}$ = 350 mA

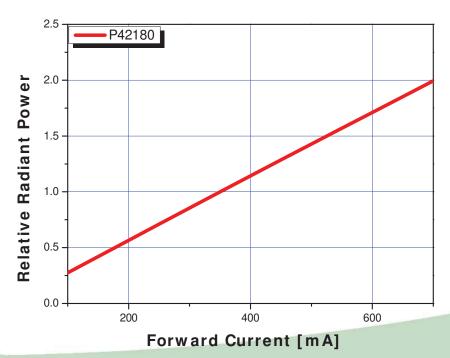

FEBRUARY, 2013


www.seoulsemicon.com

Forward Current Characteristics

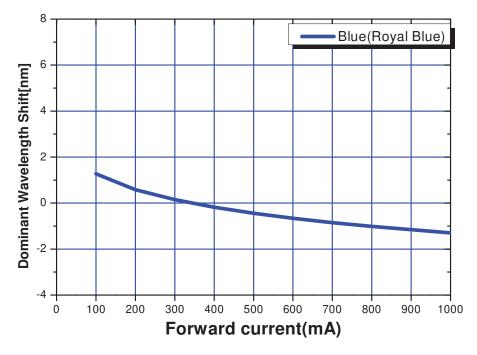
1. Forward Voltage vs. Forward Current , $T_A = 25$ $^{\circ}$ c

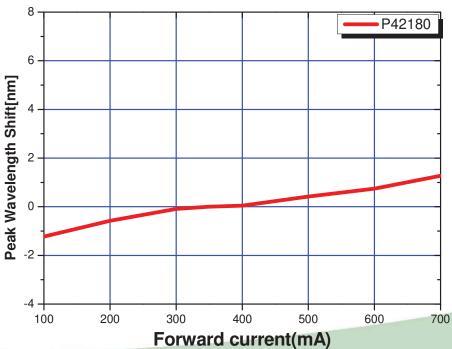

nev. 20


www.seoulsemicon.com

Forward Current Characteristics

2. Forward Current vs. Normalized Relative Luminous Flux, $\rm T_A$ = 25 $^{\circ}\,c$

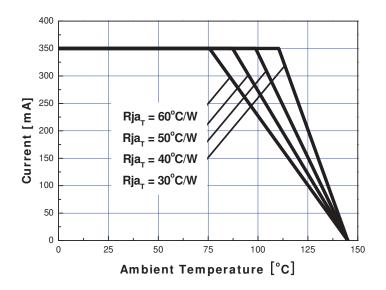

FEBRUARY, 2013


www.seoulsemicon.com

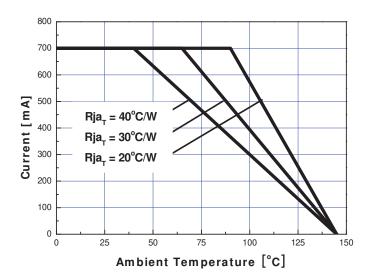
Forward Current Characteristics

3. Forward Current vs Wavelength Shift, T_A = 25 $^{\circ}$ c

nev. 20


FEBRUARY. 2013

www.seoulsemicon.com

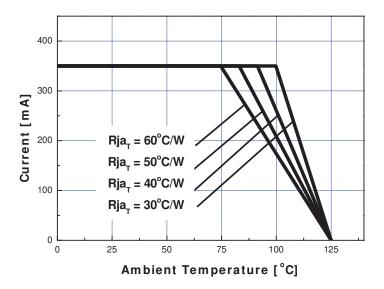


Ambient Temperature vs Allowable Forward Current

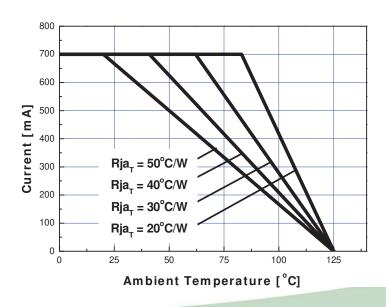
1-1. Pure White, Warm White, Natural White, Blue(Royal Blue) (T.MAX = 145 °C, @350 m A)

1-2. Pure White, Warm White, Natural White, Blue (Royal Blue) (T....x = 145 °C, @700 m A)

Rev. 20

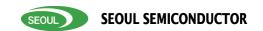

FEBRUARY. 2013

www.seoulsemicon.com

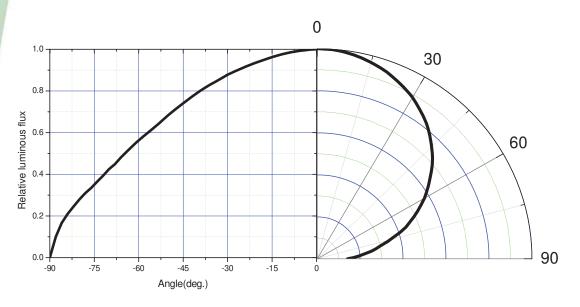


Ambient Temperature vs Allowable Forward Current

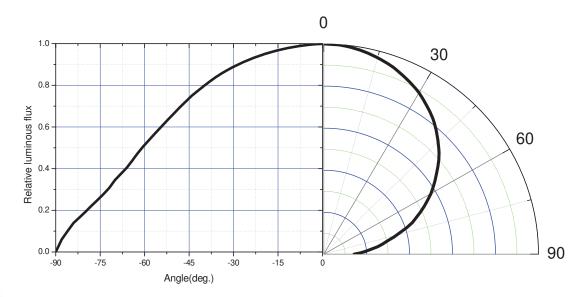
1-3. Photosynthetic Red ($T_{JMAX} = 125 \, {}^{\circ}\text{C}$, at 350 m A)


1-4. Photosynthetic Red $(T_{JMAX} = 125 \, {}^{\circ}C, \, @700 \, mA)$

Rev. 20


FEBRUARY. 2013

www.seoulsemicon.com

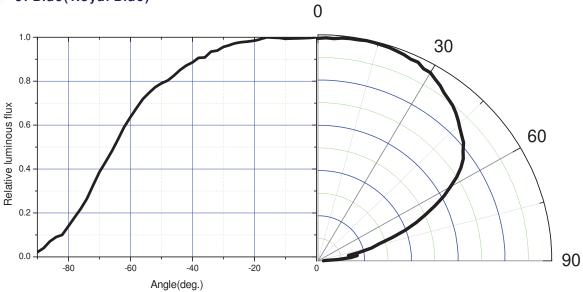


Typical Dome Type Radiation pattern

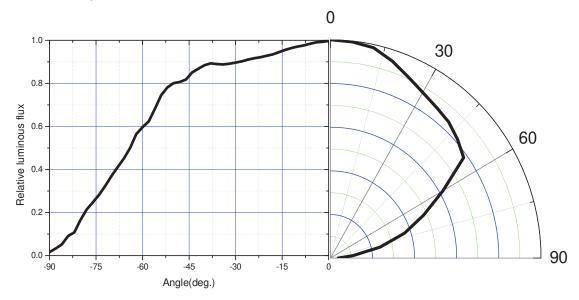
1. Pure White

2. Warm White, Natural White

Rev. 20


FEBRUARY. 2013

www.seoulsemicon.com

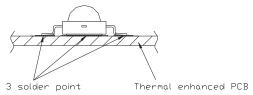


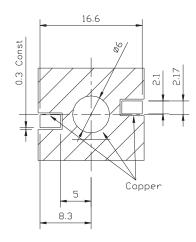
Typical Dome Type Radiation pattern

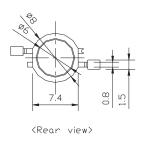
3. Blue(Royal Blue)

4. Photosynthetic Red

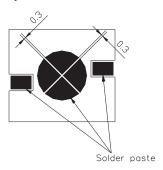
Rev. 20


FEBRUARY. 2013


www.seoulsemicon.com



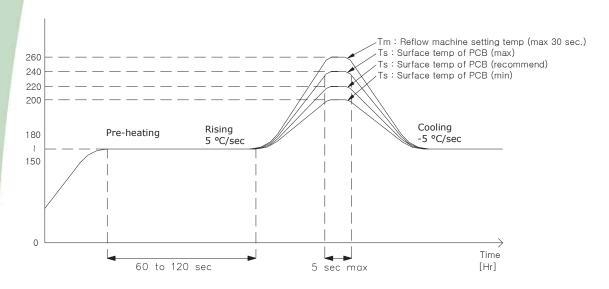
Recommended Solder pad


1. Solder pad

2. Solder paste pattern

Note:

- 1. All dimensions are in millimeters (tolerance : ± 0.2)
- 2. Scale none


*The appearance and specifications of the product may be changed for improvement without notice.

Rev. 20

FEBRUARY. 2013

www.seoulsemicon.com

3. Reflow Soldering Conditions / Profile

4. Hand Soldering conditions

Lead: Not more than 3 seconds @MAX280 ℃

Slug: Use a thermal-adhesives

* Caution

- 1. Reflow soldering should not be done more than one time.
- 2. Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, suitable tools have to be used.
- 3. The bottom of the emiter is to be soldered.
- 4. When soldering, do not put stress on the LEDs during heating.
- 5. After soldering, do not warp the circuit board.
- 6. Recommend to use a convection type reflow machine with 7 \sim 8 zones.

Rev. 20

www.seoulsemicon.com