imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

nuvoTon

8-BIT MICROCONTROLLER

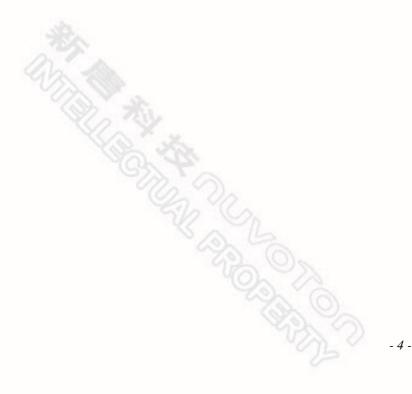
Table of Contents-

1	GENERAL DESCRIPTION	4
2	FEATURES	5
3	PARTS INFORMATION LIST	7
	3.1 Lead Free (RoHS) Parts information list	7
4	PIN CONFIGURATION	
5	PIN DESCRIPTION	
6	FUNCTIONAL DESCRIPTION	10
	6.1 On-Chip Flash EPROM	10
	6.2 I/O Ports	
	6.3 Serial I/O	10
	6.4 Timers	10
	6.5 Interrupts	10
	6.6 Data Pointers	10
	6.7 Architecture	
	6.7.1 ALU	11
	6.7.2 Accumulator	11
	6.7.3 B Register	11
	6.7.4 Program Status Word:	11
	6.7.5 Scratch-pad RAM	
	6.7.6 Stack Pointer	
7	MEMORY ORGANIZATION	
	7.1 Program Memory (on-chip Flash)	
	7.2 Data Flash Memory	
	7.3 Scratch-pad RAM and Register Map	
	7.4 Working Registers	
	7.5 Bit addressable Locations	
CO.	7.6 Stack	
8	SPECIAL FUNCTION REGISTERS	
9	INSTRUCTION	
	9.1 Instruction Timing	
10	POWER MANAGEMENT	
	10.1 Idle Mode	
	10.2 Power Down Mode	
11	RESET CONDITIONS	
	11.1 Sources of reset	
	11.1.1 External Reset	-
	11.1.2 Power-On Reset (POR)	
	11.1.3 Brown-Out Reset (BOR)	
	11.1.4 Watchdog Timer Reset	

Publication Release Date: April 16, 2009 Revision A06

nuvoTon

	11.2 Reset State	48
12	INTERRUPTS	51
	12.1 Interrupt Sources	51
	12.2 Priority Level Structure	52
	12.3 Response Time	54
13	PROGRAMMABLE TIMERS/COUNTERS	55
	13.1 Timer/Counters 0 & 1	55
	13.2 Time-Base Selection	55
	13.2.1 Mode 0	
	13.2.2 Mode 1	
	13.2.3 Mode 2	
	13.2.4 Mode 3	
14	NVM MEMORY	
15	WATCHDOG TIMER	
	15.1 WATCHDOG CONTROL	
	15.2 CLOCK CONTROL of Watchdog	
16	SERIAL PORT (UART)	
	16.1 MODE 0	
	16.2 MODE 1	
	16.3 MODE 2	
	16.4 MODE 3	
	16.5 Framing Error Detection	
	16.6 Multiprocessor Communications	
17	PULSE WIDTH MODULATED OUTPUTS (PWM)	
18	ANALOG COMPARATORS	
	18.1 Comparator Interrupt with Debouncing	
40	18.2 Application circuit	
19		
20	I/O PORT MODE SETTING	
	20.1 Quasi-Bidirectional Output Configuration	
	20.2 Open Drain Output Configuration	
21	OSCILLATOR	
	21.1 On-Chip RC Oscillator Option	
Yo	21.2 External Clock Input Option	
22	POWER MONITORING FUNCTION	
	22.1 Brownout Detect and Reset	
23	ICP (IN-CIRCUIT PROGRAM) FLASH MODE	
24	CONFIG BITS	
	24.1 CONFIG0	
	24.2 CONFIG1	
25	ELECTRICAL CHARACTERISTICS	
	25.1 Absolute Maximum Ratings	84


nuvoTon

	25.2	DC ELECTRICAL CHARACTERISTICS	. 85
	25.3	The COMPARATOR ELECTRICAL CHARACTERISTICS	. 87
	25.4	AC ELECTRICAL CHARACTERISTICS	. 88
	25.5	EXTERNAL CLOCK CHARACTERISTICS	. 88
	25.6	RC OSC AND AC CHARACTERISTICS	. 89
26	TYPIC	AL APPLICATION CIRCUITS	. 90
27	PACK	AGE DIMENSIONS	. 91
		20-pin SOP	
	27.2	20-pin DIP	. 92
	27.3	20-pin SSOP	. 93
28	REVIS	ION HISTORY	. 94

1 GENERAL DESCRIPTION

The W79E4051/2051 series are an 8-bit Turbo 51 microcontroller which has an in-system programmable Flash EPROM which Flash EPROM can program by **ICP (In Circuit Program) Writer**. The instruction set of the W79E4051/2051 series are fully compatible with the standard 8052. The W79E4051/2051 series contain a **4K/2K** bytes of program Flash EPROM; a **256** bytes of RAM; **128** bytes data Flash EPROM for customer data storage; two 8-bit bi-directional and bit-addressable I/O ports; two 16-bit timer/counters; an enhanced full duplex serial port; 1 channel PWM by 10-bit counter, Brownout voltage detection/reset, Power on reset detection and one analog comparator. These peripherals are supported by **9** sources of four-level interrupt capability. To facilitate programming and verification, the Flash EPROM inside the W79E4051/2051 series allow the program memory to be programmed and read electronically. Once the code is confirmed, the user can protect the code for security.

2 FEATURES

- Fully static design 8-bit Turbo 51 CMOS microcontroller up to 24MHz
- Single power: 2.4~5.5V Up to 12MHz, 4.5~5.5V up to 24MHz
- Flexible CPU clock source configurable by config bit and software:
 - High speed external oscillator: upto 24MHz Crystal and resonator (enabled by config bit).
 - Internal RC oscillator: 22.1184/11.0592MHz with ±2% accuracy (selectable by config bit), at 5.0 voltage and 25°Ccondition, for W79E2051R and W79E4051R
- Instruction-set compatible with MCS-51
- 4K/2K bytes of Program Flash EPROM, with ICP and external writer programmable mode.
- 256 bytes of on-chip RAM
- W79E4051/2051 supports 128 bytes Data Flash EPROM for customer data storage used and 10K writer cycles.
 - 8 pages. Page size is 16 bytes.
 - Data Flash program/erase V_{DD} =3.0V to 5.5V
- One 8-bit bi-directional port(Port1), one 7-bit bi-directional port(Port3) and one 2-bit bidirectional port(P2.0 and P2.1 shared with XT1 and XT2 pins)
- I/O capable of driving LED max. 20mA per pin, max to 80mA for total pins.
- Two 16-bit timer/counters
- 9 Interrupt source with four levels of priority
- **One** enhanced full duplex serial port with framing error detection and automatic address recognition
- One channel 10-bit PWM output
- One analog Comparator
- Built-in Power Management
 - Power on reset flag
 - Brownout voltage detect/reset
 - Operating Temperature: -40~85°C
- Packages:
 - Lead Free (RoHS) PDIP 20: W79E4051AKG
 - Lead Free (RoHS) SOP 20: W79E4051ASG
 - Lead Free (RoHS) SSOP 20: W79E4051ARG
 - Lead Free (RoHS) PDIP 20: W79E2051AKG
 - Lead Free (RoHS) SOP 20: W79E2051ASG
 - Lead Free (RoHS) SSOP 20: W79E2051ARG
 - Lead Free (RoHS) PDIP 20: W79E4051RAKG
 - Lead Free (RoHS) SOP 20: W79E4051RASG
 - Lead Free (RoHS) SSOP 20: W79E4051RARG

nuvoTon

- Lead Free (RoHS) PDIP 20: W79E2051RAKG
- Lead Free (RoHS) SOP 20: W79E2051RASG
- Lead Free (RoHS) SSOP 20: W79E2051RARG

3 PARTS INFORMATION LIST

3.1 Lead Free (RoHS) Parts information list

Table 3-1: Lead Free (RoHS) Parts information list

PART NO.	PROGRAM FLASH EPROM	RAM	DATA FLASH EPROM	INTERNAL RC OSCILLATOR ACCURACY ¹	PACKAGE
W79E4051AKG	4KB	256B	128B	$22 \text{MHz} \pm 25\%$	PDIP-20 Pin
W79E4051ASG	4KB	256B	128B	$22MHz \pm 25\%$	SOP-20 Pin
W79E4051ARG	4KB	256B	128B	22MHz ± 25%	SSOP-20 Pin
W79E2051AKG	2KB	256B	128B	22MHz ± 25%	PDIP-20 Pin
W79E2051ASG	2KB	256B	128B	22MHz ± 25%	SOP-20 Pin
W79E2051ARG	2KB	256B	128B	22MHz ± 25%	SSOP-20 Pin
W79E4051RAKG	4KB	256B	128B	22.1184MHz ± 2%	PDIP-20 Pin
W79E4051RASG	4KB	256B	128B	22.1184MHz ± 2%	SOP-20 Pin
W79E4051RARG	4KB	256B	128B	$22.1184 MHz \pm 2\%$	SSOP-20 Pin
W79E2051RAKG	2KB	256B	128B	22.1184MHz ± 2%	PDIP-20 Pin
W79E2051RASG	2KB	256B	128B	22.1184MHz ± 2%	SOP-20 Pin
W79E2051RARG	2KB	256B	128B	22.1184MHz ± 2%	SSOP-20 Pin

Note:

1. Factory calibration condition: $V_{DD}=5.0V$, TA = 25°C

4 PIN CONFIGURATION

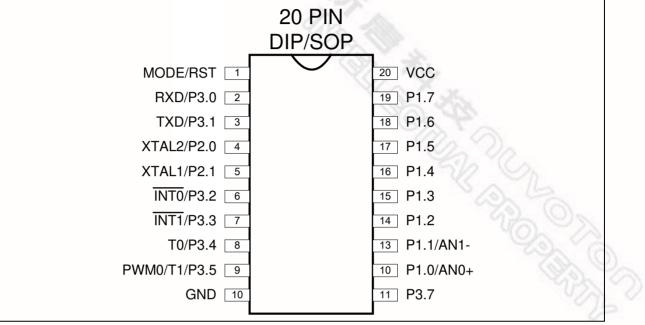


Table 4-1: Pin Configuration

SYMBOL	Alternate Function 1	Alternate function 2	Alternate function 3 (ICP mode)	Туре		DESCRIPTIONS
P2.1	X1			I/O	D	CRYSTAL1 : This is the crystal oscillator input. This pin may be driven by an external clock or configurable i/o pin.
P2.0	X2/CLKOU	Т		I/O	0	CRYSTAL2 : This is the crystal oscillator output. It is the inversion of XTAL1. Also a configurable i/o pin.
VDD	-			I	D	POWER SUPPLY : Supply voltage for operation.
VSS	-			I	P	GROUND: Ground potential.
RST			MODE		I	RESET : A high on this pin for two machine cycles while the oscillator is running resets the device. MODE: used in ICP mode.
P1.0	AN0+			I/C), D	Port1:
P1.1	AN1-			I/C), D	8-bit bi-directional I/O port with
P1.2				I/	0	-internal weakly pull-ups. P1.0~P1.1 are open-drain mode after reset.
P1.3				I/	0	Multifunction pins:
P1.4				I/	0	AN0+ and AN1- are analog
P1.5				I/	0	-comparator inputs. Data and SCK are used in ICP mode
P1.6			Data	I/	0	
P1.7			SCK	I/	0	
P3.0	RXD			I/	0	Port3:
P3.1	TXD			I/	0	7-bit bi-directional I/O port, P3.0~P3.7
P3.2	/INT0			I/	0	except P3.6, with internal weakly pull- ups. P3.6 is internal wired to analog
P3.3	/INT1			I/	0	comparator output.
P3.4	TO			I/	0	Multifunction pins for TXD & RXD (UART),/INT0-1, T0, T1/PWM0.
P3.5	D.	PWM0		I/	0	
P3.6	3b Co	8			S]
P3.7	SAT	5		I/	0	

* Note : TYPE P: Power, I: input, O: output, I/O: bi-directional, S: internal Signal.

6 FUNCTIONAL DESCRIPTION

The W79E4051/2051 architecture consist of a 4T 8051 core controller surrounded by various registers, 4K/2K bytes AP Flash EPROM, 256 bytes of RAM, 128 bytes Data Flash EPROM, three general purpose I/O ports, two timer/counters, one serial port, Flash EPROM program by Writer and ICP.

6.1 On-Chip Flash EPROM

The W79E4051/2051 includes one **4K/2K** bytes of main Flash EPROM for application program. A Writer or ICP programming board is required to program the AP Flash EPROM and Data Flash EPROM.

This ICP (In-Circuit Programming) feature makes the job easy and efficient when the application's firmware needs to be updated frequently. In some applications, the in-circuit programming feature makes it possible for the end-user to easily update the system firmware without opening the chassis.

6.2 I/O Ports

W79E4051/2051 has one 8-bit, one 7-bit and one 2-bit ports using on-chip oscillator by reset options. Except P1.0 and P1.1, all ports are in quasi-bidrectional structure that the internal weakly pull-ups are present as the port registers are set to logic one. P1.0~P1.1, the alternate function are analog comparator inputs, stays in PMOS-off open-drain mode after CPU reset.

6.3 Serial I/O

The W79E4051/2051 has one serial port that is functionally similar to the serial port of the original 8051 family. However the serial port on the W79E4051/2051 can operate in different modes in order to obtain timing similarity as well. The Serial port has the enhanced features of Automatic Address recognition and Frame Error detection.

6.4 Timers

The W79E4051/2051 has two 16-bit timers that are functionally and similar to the timers of the 8051 family. When used as timers, user has a choice to set 12 or 6 clocks per count that emulates the timing of the original 8051. Each timer's count value is stored in two SFR locations that can be written or read by software. There are also some other SFRs associated with the timers that control their mode and operation.

6.5 Interrupts

The Interrupt structure in the W79E4051/2051 is slightly different from that of the standard 8051. Due to the presence of additional features and peripherals, the number of interrupt sources and vectors has been increased.

6.6 Data Pointers

The data pointer of W79E4051/2051 is similar to standard 8051 but has dual 16-bit Data Pointers (DPTR) by setting DPS of AUXR2.0. In addition there is an added instruction, DEC DPTR (op-code A5H), which helps in improving programming flexibility for the user.

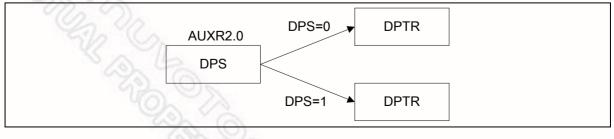


Table 6-1: Data Pointer

6.7 Architecture

The W79E4051/2051 is based on the standard MCS-51 device. It is built around an 8-bit ALU that uses internal registers for temporary storage and control of the peripheral devices. It can execute the standard MCS-51 instruction set.

6.7.1 ALU

The ALU is the heart of the W79E4051/2051. It is responsible for the arithmetic and logical functions. It is also used in decision making, in case of jump instructions, and is also used in calculating jump address. The user cannot directly use the ALU, but the Instruction Decoder reads the op-code, decodes it, and sequences the data through the ALU and its associated registers to generate the required result. The ALU mainly uses the ACC which is a special function register (SFR) on the chip. Another SFR, namely B register is also used in Multiply and Divide instructions. The ALU generates several status signals which are stored in the Program Status Word register (PSW).

6.7.2 Accumulator

The Accumulator (ACC) is the primary register used in arithmetic, logical and data transfer operations in the W79E4051/2051. Since the Accumulator is directly accessible by the CPU, most of the high speed instructions make use of the ACC as one argument.

6.7.3 B Register

This is an 8-bit register that is used as the second argument in the MUL and DIV instructions. For all other instructions it can be used simply as a general purpose register.

6.7.4 Program Status Word:

This is an 8-bit SFR that is used to store the status bits of the ALU. It holds the Carry flag, the Auxiliary Carry flag, General purpose flags, the Register Bank Select, the Overflow flag, and the Parity flag.

6.7.5 Scratch-pad RAM

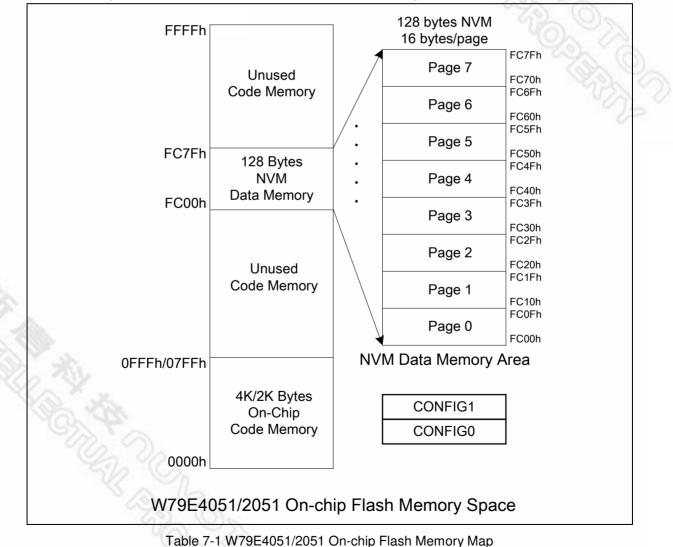
The W79E4051/2051 has a 256 byte on-chip scratch-pad RAM. This can be used by the user for temporary storage during program execution. A certain section of this RAM is bit addressable, and can be directly addressed for this purpose.

6.7.6 Stack Pointer

The W79E4051/2051 has an 8-bit Stack Pointer which points to the top of the Stack. This stack resides in the Scratch Pad RAM in the W79E4051/2051. Hence the size of the stack is limited by the size of this RAM.

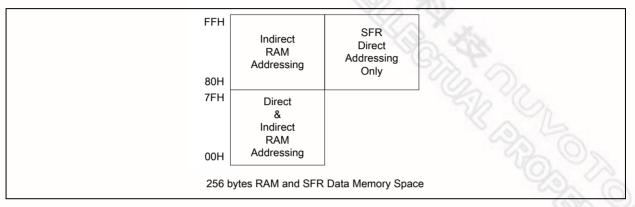
- 11 -

7 MEMORY ORGANIZATION


The W79E4051/2051 series separate the memory into two separate sections, the Program Memory and the Data Memory. The Program Memory is used to store the instruction op-codes, while the Data Memory is used to store data or for memory mapped devices.

7.1 Program Memory (on-chip Flash)

The Program Memory on the W79E4051/2051 series can be up to 4K/2K bytes long. All instructions are fetched for execution from this memory area. The MOVC instruction can also access this memory region.


7.2 Data Flash Memory

The Data Flash EPROM on the W79E4051/2051 series is **128** bytes long with page size of **16** bytes. The W79E4051/2051 series read the content of data memory by using "MOVC A, @A+DPTR". To write data is by NVMADDRL, NVMDATA and NVMCON SFR's registers.

7.3 Scratch-pad RAM and Register Map

As mentioned before the W79E4051/2051 series have separate Program and Data Memory areas. The on-chip **256** bytes scratch pad RAM is built in W79E4051/2051. There are also several Special Function Registers (SFRs) which can be accessed by software. The SFRs can be accessed only by direct addressing, while the on-chip RAM can be accessed by either direct or indirect addressing.

Table 7-2 W79E4051/2051 256 bytes RAM and SFR memory map

Since the scratch-pad RAM is **256** bytes it can be used only when data contents are small. There are several other special purpose areas within the scratch-pad RAM. These are illustrated in next figure.

FFH 80H 7FH			In	direo	t RA	M			
			C)irec [:]	t RAI	м		N.	
30H	75		70		70		70	70	
2FH 2EH	7F 77	7E 76	7D 75	7C 74	7B 73	7A 72	79 71	78 70	
2DH	6F	76 6E	6D	6C	73 6B	6A	69	68	
2CH	67	0∟ 66	65	64	63	62	61	60	
2BH	5F	5E	5D	5C	5B	5A	59	58	
2AH	57	56	55	54	53	52	51	50	
29H	4F	4E	4D	4C	4B	4A	49	48	
28H	47	46	45	44	43	42	41	40	
27H	3F	3E	3D	3C	3B	ЗA	39	38	
26H	37	36	35	34	33	32	31	30	
25H	2F	2E	2D	2C	2B	2A	29	28	
24H	27	26	25	24	23	22	21	20	
23H	1F	1E	1D	1C	1B	1A	19	18	
22H	17	16	15	14	13	12	11	10	
21H	0F	0E	0D	0C	0B	0A	09	08	
20H	07	06	05	04	03	02	01	00	
1FH 18H 17H				Bar	1k 3				
10H 0FH				Bar	nk 2				
08H 07H				Bar	1 1				
00H				Bar	nk O				

Table 7-3 Scratch-pad RAM

7.4 Working Registers

There are four sets of working registers, each consisting of eight 8-bit registers. These are termed as Banks 0, 1, 2, and 3. Individual registers within these banks can be directly accessed by separate instructions. These individual registers are named as R0, R1, R2, R3, R4, R5, R6 and R7. However, at one time the W79E4051/2051 series can work with only one particular bank. The bank selection is done by setting RS1-RS0 bits in the PSW. The R0 and R1 registers are used to store the address for indirect accessing.

7.5 Bit addressable Locations

The Scratch-pad RAM area from location 20h to 2Fh is byte as well as bit addressable. This means that a bit in this area can be individually addressed. In addition some of the SFRs are also bit addressable. The instruction decoder is able to distinguish a bit access from a byte access by the type of the instruction itself. In the SFR area, any existing SFR whose address ends in a 0 or 8 is bit addressable.

7.6 Stack

The scratch-pad RAM can be used for the stack. This area is selected by the Stack Pointer (SP), which stores the address of the top of the stack. Whenever a jump, call or interrupt is invoked the return address is placed on the stack. There is no restriction as to where the stack can begin in the RAM. By default however, the Stack Pointer contains 07h at reset. The user can then change this to any value desired. The SP will point to the last used value. Therefore, the SP will be incremented and then address saved onto the stack. Conversely, while popping from the stack the contents will be read first, and then the SP is decreased.

8 SPECIAL FUNCTION REGISTERS

The W79E4051/2051 series uses Special Function Registers (SFRs) to control and monitor peripherals and their Modes. The SFRs reside in the register locations 80-FFh and are accessed by direct addressing only. Some of the SFRs are bit addressable. This is very useful in cases where users wish to modify a particular bit without changing the others. The SFRs that are bit addressable are those whose addresses end in 0 or 8. The W79E4051/2051 series contain all the SFRs present in the standard 8052. However some additional SFRs are added. In some cases the unused bits in the original 8052, have been given new functions. The list of the SFRs is as follows.

F8	IP1					Mark Mark		
						1927 L	100	
F0	В					(m	PCMPIDS	IP1H
E8	EIE						OB	
E0	ACC					51	2 02	
D8	WDCON	PWMPL	PWM0L		PWMCON1	1	Salla	0
D0	PSW	PWMPH	PWM0H				202	PWMCON3
C8							NVMCON	NVMDATA
C0							NVMADDRL	ТА
B8	IP0	SADEN					22	6
B0	P3			P1M1			4	IP0H
A8	IE	SADDR						Nix S
A0	P2		AUXR1	AUXR2				"and
98	SCON	SBUF						6
90	P1						ACCK	ACSR
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	CLKREG
80		SP	DPL	DPH				PCON

Table 8-1: Special Function Register Location Table

Note:

- 1. The SFRs in the column with dark borders are bit-addressable
- 2. The table is condensed with eight locations per row. Empty locations indicate that these are no registers at these addresses.

SYMBOL	DEFINITION	ADDRESS	MSB		BIT AD	DRESS, SY	MBOL			LSB	RESET
IP1	Interrupt priority 1	F8H	(FF) -	(FE) PBOV	(FD) PPWM	(FC) PWDI	(FB) -	(FA) -	(F9) -	(F8) -	x000 xxxxB
IP1H	Interrupt high priority 1	F7H	-	PBOVH	PPWMH	PWDIH	-	-	-	-	x000 xxxxB
PCMPIDS	Port Comparator Input Disable	F6H	-	-	-1/2	- (100)	-	-	B1	B0	xxxx 0000B
В	B register	F0H	(F7)	(F6)	(F5)	(F4)	(F3)	(F2)	(F1)	(F0)	0000000B
EIE	Interrupt enable 1	E8H	(EF) -	(EE) EBOV	(ED) EPWM	(EC) EWDI	(EB) -	(EA) -	(E9) -	(E8) -	xx000 xxxxB
ACC	Accumulator	E0H	(E7)	(E6)	(E5)	(E4)	(E3)	(E2)	(E1)	(E0)	0000000B
PWMCON1	PWM CONTROL REGISTER 1	DCH	PWMRUN	load	PWMF	CLRPWM		-	-	PWM0I	0000 0000B
PWM0L	PWM 0 LOW BITS REGISTER	DAH	PWM0.7	PWM0.6	PWM0.5	PWM0.4	PWM0.3	PWM0.2	PWM0.1	PWM0.0	0000 0000B
PWMPL	PWM COUNTER LOW REGISTER	D9H	PWMP0.7	PWMP0.6	PWMP0.5	PWMP0.4	PWMP0.3	PWMP0.2	PWMP0.1	PWMP0.0	0000 0000B
WDCON	WATCH-DOG CONTROL	D8H	(DF) WDRUN	(DE) -	(DD) WD1	(DC) WD0	(DB) WDIF	(DA) WTRF	(D9) EWRST	(D8) WDCLR	0X00 0000B
PWMCON3	PWM CONTROL REGISTER 3	D7H	-	-	-	PWM00E		121	FP1	FP0	0000 XX00B
PWM0H	PWM 0 HIGH BITS REGISTER	D2H	-	-	-	-	-		PWM0.9	PWM0.8	XXXX XX00E
PWMPH	PWM COUNTER HIGH REGISTER	D1H	-	-	-	-	-	- 63	PWMP0.9	PWMP0.8	XXXX XX00E
PSW	Program Status word	D0H	(D7) CY	(D6) AC	(D5) F0	(D4) RS1	(D3) RS0	(D2) OV	(D1) F1	(D0) P	0000000B
NVMDATA	NVM Data	CFH			-						00000000B
NVMCON	NVM Control	CEH	EER	EWR	-	-	-	-	- 643	h 6	00xxxxxB
ТА	Timed Access Protection	C7H	TA.7	TA.6	TA.5	TA.4	TA.3	TA.2	TA.1	TA.0	11111111B
NVMADDRL	NVM byte address	C6H		NVMADDR. 6				NVMADD R.2		NVMADDR .0	0000000B
SADEN	Slave address mask	B9H		-	-		-			14/2	00000000B
IP0	Interrupt priority 0	B8H	(BF) -	(BE) PC	(BD) -	(BC) PS	(BB) PT1	(BA) PX1	(B9) PT0	(B8) PX0	x0x00000B
IP0H	Interrupt high priority 0	B7H	-	PCH	-	PSH	PT1H	PX1H	PTOH	PX0H	x0x00000B
P1M1	Port1 Mode 1	B3H	-	-	-	-	-	-	P1M1.1	P1M1.0	xxxx xx00B
P3	Port 3	BOH	(B7)	(B6)	(B5) T1	(B4) T0	(B3) INT1	(B2) INT0	(B1) TXD	(B0) RXD	11111111B
SADDR	Slave address	A9H									00000000B
IE	Interrupt enable	A8H	(AF) EA	(AE) EC	(AD) -	(AC) ES	(AB) ET1	(AA) EX1	(A9) ET0	(A8) EX0	00x00000B
AUXR2	AUX function register 2	A3H								DPS	xxxx xxx0B
AUXR1	AUX function register 1	A2H	BOF	BOD ²	BOI	LPBOV	SRST	BOV1 ³	BOV0 ³	BOS	0x00 0xx0B
P2	Port 2	A0H	(A7) -	(A6) -	(A5) -	(A4) -	(A3) -	(A2) -	(A1) P2.1 XTAL1	(A0) P2.0 XTAL2 CLKOUT	xxxx xxxxB
SBUF	Serial buffer	99H									xxxxxxxB
SCON	Serial control	98H	(9F) SM0/FE	(9E) SM1	(9D) SM2	(9C) REN	(9B) TB8	(9A) RB8	(99) TI	(98) RI	0000000B
ACSR	Analog Comparator Control & Status Register	97H	-	-	CIPE	CF	CEN	CM2	CM1	CM0	xx000000B
ACCK	Analog Comparator Debounce Clock Control	96H	ENCLK	-	-	-	-	CPCK2	CPCK1	CPCK0	0000 0000B
P1	Port 1	90H	(97)	(96)	(95)	(94)	(93)	(92)	(91)	(90)	11111111B
CLKREG	1000	8FH						PWDEX1	PWDEX0		Xxxx x00xB
CKCON	Clock control	8EH	-	-	-	T1M	TOM	-	-	-	xxx00xxxB
TH1	Timer high 1	8DH									0000000B
TH0	Timer high 0	8CH									0000000B
TL1	Timer low 1	8BH									0000000B
TL0	Timer low 0	8AH									0000000B
TMOD	Timer mode	89H	GATE	C/T1#	M1	M0	GATE	C/T0#	M1	M0	0000000B
TCON	Timer control	88H	(8F) TF1	(8E) TR1	(8D) TF0	(8C) TR0	(8B) IE1	(8A) IT1	(89) IE0	(88) IT0	0000000B
PCON	Power control	87H	SMOD	SMOD0		POR	GF1	GF0	PD	IDL	00xx0000B
DPH	Data pointer high	83H									0000000B
DPL	Data pointer low	82H									0000000B
SP	Stack pointer	81H									00000111B

Table 8-2: Special Function Registers

nuvoTon

Note :

- In column **BIT_ADDRESS**, **SYMBOL**, containing () item means the bit address.
 BOD is initialized at reset with the inversed value of bit CBOD in config0-bits.
- 3. (BOV1,BOV0) are initialized at reset with the reversed value of config0-bits (CBOV1,CBOV0)

nuvoTon

STACK POINTER Bit: 7 6 5 4 3 2 0 1 SP.5 SP.4 SP.0 SP.7 SP.6 SP.3 SP.2 SP.1 Mnemonic: SP Address: 81h NAME **FUNCTION** BIT 7-0 SP.[7:0] The Stack Pointer stores the Scratch-pad RAM address where the stack begins. In other words it always points to the top of the stack. DATA POINTER LOW Bit: 7 6 5 4 3 2 0 1 DPL.7 DPL.6 DPL.5 DPL.4 DPL.3 DPL.2 DPL 1 DPL.0 Mnemonic: DPL Address: 82h BIT NAME FUNCTION 7-0 DPL.[7:0] This is the low byte of the standard 8052 16-bit data pointer. **DATA POINTER HIGH** Bit: 7 6 5 4 3 2 1 0 DPH.2 DPH.1 DPH.7 DPH.6 DPH.5 DPH.4 DPH.3 DPH.0 Mnemonic: DPH Address: 83h NAME FUNCTION BIT 7-0 DPH.[7:0] This is the high byte of the standard 8052 16-bit data pointer. **POWER CONTROL** 0 Bit: 7 6 5 4 3 2 1 SMOD0 POR GF1 GF0 PD IDL SMOD _ Mnemonic: PCON Address: 87h BIT NAME **FUNCTION** 7 SMOD 1: This bit doubles the serial port baud rate in mode 1, 2, and 3. 0: Framing Error Detection Disable. SCON.7 (SM0/FE) bit is used as SM0 6 SMOD (standard 8052 function). 0 1: Framing Error Detection Enable. SCON.7 (SM0/FE) bit is used to reflect as Frame Error (FE) status flag. Reserved 5 -4 POR 0: Cleared by software. 1: Set automatically when a power-on reset has occurred. GF1 General purpose user flags. 3 GF0 2 General purpose user flags. 1 PD 1: The CPU goes into the POWER DOWN mode. In this mode, all the clocks are stopped and program execution is frozen.

ηυνοτοη

0	IDL	1: The CPU goes into the IDLE mode. In this mode, the clocks CPU clock stopped,
		so program execution is frozen. But the clock to the serial, timer and interrupt
		blocks is not stopped, and these blocks continue operating.

TIMER CONTROL

		-										
Bit:	7	6	5	4	3	2	1	0				
	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0				
N	Inemonic:	TCON			1	Ya.	20	Address: 88h				
BIT	NAME FUNCTION											
7	TF1	automaticall	Timer 1 Overflow Flag. This bit is set when Timer 1 overflows. It is cleared automatically when the program does a timer 1 interrupt service routine. Software can also set or clear this bit.									
6	TR1	Timer 1 Run or off.	Timer 1 Run Control. This bit is set or cleared by software to turn timer/counter on or off.									
5	TF0	automaticall	Timer 0 Overflow Flag. This bit is set when Timer 0 overflows. It is cleared automatically when the program does a timer 0 interrupt service routine. Software can also set or clear this bit.									
4	TR0	Timer 0 Run or off.	Control.	This bit is se	et or cleared	by softwar	e to turn time	er/counter on				
3	IE1	INT1. This t	oit is cleare	ed by hardw	by hardware vare when the Otherwise it f	e service ro	outine is vec	tored to only if				
2	IT1		Interrupt 1 Type Control. Set/cleared by software to specify falling edge/ low level triggered external inputs.									
1	IE0	on INT0. Th	Interrupt 0 Edge Detect Flag. Set by hardware when an edge/level is detected on INT0. This bit is cleared by hardware when the service routine is vectored to only if the interrupt was edge triggered. Otherwise it follows the inverse of the pin.									
0	IT0	Interrupt 0 T triggered ext			red by softwa	are to spec	ify falling ed	ge/ low level				

TIMER MODE CONTROL

Bit:	7	6	5	4	3	2	1	0		
	GATE	C/T	M1	M0	GATE	C/T	M1	M0		
	TIMER1					TIMER0				

		TIMERO
N	TMOD Address: 89ł	
BIT	NAME	FUNCTION
7	GATE	Gating control: When this bit is set, Timer/counter 1 is enabled only while the $\overline{INT1}$ pin is high and the TR1 control bit is set. When cleared, the $\overline{INT1}$ pin has no effect, and Timer 1 is enabled whenever TR1 control bit is set.
6	C/T	Timer or Counter Select: When clear, Timer 1 is incremented by the internal clock. When set, the timer counts falling edges on the T1 pin.
5	M1	Timer 1 mode select bit 1. See table below.

nuvoTon

4	M0	Timer 1 mode select bit 0. See table below.
3	GATE	Gating control: When this bit is set, Timer/counter 0 is enabled only while the \overline{INTO}
		pin is high and the TR0 control bit is set. When cleared, the $\overline{INT0}$ pin has no effect, and Timer 0 is enabled whenever TR0 control bit is set.
2	C/T	Timer or Counter Select: When clear, Timer 0 is incremented by the internal clock. When set, the timer counts falling edges on the T0 pin.
1	M1	Timer 0 mode select bit 1. See table below.
0	M0	Timer 0 mode select bit 0. See table below.

M1, M0: Mode Select bits:

M1	MO	MODE
0	0	Mode 0: 8-bit timer/counter TLx serves as 5-bit pre-scale.
0	1	Mode 1: 16-bit timer/counter, no pre-scale.
1	0	Mode 2: 8-bit timer/counter with auto-reload from THx.
1	1	Mode 3: (Timer 0) TL0 is an 8-bit timer/counter controlled by the standard Timer0 control bits. TH0 is an 8-bit timer only controlled by Timer1 control bits. (Timer 1) Timer/Counter 1 is stopped.

TIMER 0 LSB

Bit:	7	6	5	4	3	2	1	0		
	TL0.7	TL0.6	TL0.5	TL0.4	TL0.3	TL0.2	TL0.1	TL0.0		
Mnemonic: TL0 Address: 8Ah										
BIT	BIT NAME FUNCTION									
7-0	TL0.[7:0]	Timer 0 LS	B.							

TIMER 1 LSB

Bit:	7	6	5	4	3	2	1	0		
	TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.0		
Mnemonic: TL1 Address: 8Bh										
BIT	BIT NAME FUNCTION									
7-0	TL1.[7:0]	Timer 1 LSB.								

TIMER 0 MSB

TH0.7 TH0.6 TH0.5 TH0.4 TH0.3 TH0.2 TH0.1 TH0.0 Mnemonic: TH0 Address: BIT NAME FUNCTION FUNCTION 7-0 TH0.[7:0] Timer 0 MSB.	Bit:	7	6	5	4	3	2	1	0			
BIT NAME FUNCTION		TH0.7	TH0.6	TH0.5	TH0.4	TH0.3	TH0.2	TH0.1	TH0.0			
	Μ	Mnemonic: TH0 Address: 8Ch										
7-0 TH0.[7:0] Timer 0 MSB.	BIT NAME FUNCTION											
	7-0											

nuvoTon

TIMER 1 MSB

Bit:	7	6		5	4	3	2	1	0
	TH1.7	TI	H1.6	TH1.5	TH1.4	TH1.3	TH1.2	TH1.1	TH1.0
ſ	Mnemonic	: TH1				VAR	0		Address: 8Dh
BIT	IT NAME FUNCTION								
7-0	TH1.[7	:0] Ti	imer 1 M	SB.		N.	22.8		
CLO	СК СОМТ	ROL							
Bit:	7	6		5	4	3	2	2.12	0
	-	-		-	T1M	T0M	-	56 (2-
I	Mnemonic	: CKC	NC					SA	Address: 8Eh
BIT	NAME	FUNC	TION					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0
7-5	-	Rese	rved.					9	On 22
		Time	r 1 clock	select:					Non Con
4	T1M				by 12 clocks				Con a second
		Time	r 0 clock	select:					100
3	ТОМ				by 12 clocks				9
2-0	-	Rese	rved.						

CLOCK REGISTER

Bit:	7	6	5	4	3	2	1	0	
	-	-	-	-	-	PWDEX1	PWDEX0	-	
Mnemonic: CLDREG A									

BIT	NAME	FUNCTI	ON					
7-5	-	Reserve	ed.					
2	PWDEX	1 Power D	Down Exit Mode.					
1	PWDEX	0 Power D	ower Down Exit Mode.					
0	- 1 Ke	Reserve	ed.					
2	SX.		Power Down Exit Mode:					
	PWDEX1	PWDEX0	Power Down Exit Mode					
	0	0	Wake up from Power Down is internally timed.					

Power Down Exit Mode:

PWDEX1	PWDEX0	Power Down Exit Mode
0	0	Wake up from Power Down is internally timed.
° (C)	Dr.	INT0 or INT1 must be configured for low-level trigger mode.
0	10	Wake up from Power Down is externally controlled.
2	AL	INT0 or INT1 must be configured for low-level trigger mode.
1	x	Wake up from Power Down immediately.
	0	$\overline{\text{INT0}}$ or $\overline{\text{INT1}}$ can be configured for low-level or edge trigger mode.

nuvoTon

PORT 1

Bit:	7	6	5	4	3	2	1	0
	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0

Mnemonic: P1

Address: 90h

Address: 96h

P1.7-0: General purpose Input/Output port. Most instructions will read the port pins in case of a port read access, however in case of read-modify-write instructions, the port latch is read. These alternate functions are described below:

BIT	NAME	FUNCTION	NO. COM
1	P1.1	AN1+	
0	P1.0	AN0-	

ANALOG COMPARATOR DEBOUNCE CLOCK CONTROL

Bit:	7	6	5	4	3	2	1 60	00
	ENCLK	-	-	-	-	CPCK2	CPCK1	CPCK0

Mnemonic: ACCK

BIT	NAME	FUNCTION
7	ENCLK	1: Enable clock output to the XTAL2 pin (P2.0) when CPU clock is from the external OSC or on-chip RC oscillator. The frequency of the clock output is 1/4 of the CPU clock rate.
6-3	-	Reserved.
2	CPCK2	See as below table.
1	CPCK1	See as below table.
0	CPCK0	See as below table.

Comparator Debouncing Time Setting:

CPCK2	CPCK 1	CPCK 0	Debouncing Time		
0	0	0	(3/F _{DB})*2~(4/F _{DB})*2		
0	0	1	(3/F _{DB})*4~(4/F _{DB})*4		
0	1	0	(3/F _{DB})*8~(4/F _{DB})*8		
0	1	1	(3/F _{DB})*16~(4/F _{DB})*16		
1	0	0	(3/F _{DB})*32~(4/F _{DB})*32		
1	0	1	(3/F _{DB})*64~(4/F _{DB})*64		
1	1	0	(3/F _{DB})*128~(4/F _{DB})*128		

ANALOG COMPARATOR CONTROL & STATUS REGISTER

Bit:	7		6	16:	5	4	3	2	1	0
	-	12	S		CIPE	CF	CEN	CM2	CM1	CM0
Μ	nemo	nic: A	CSR	Oh	22					Address: 97h

Publication Release Date: April 16, 2009 Revision A06

BIT	NAME	FUNCTION
7-6	-	Reserved.
5	CIPE	Comparator Enabled in Idle and Power down Mode.
		0: Comparator disabled in idle and power down mode. (default)1: Comparator enabled in idle and power down mode.
4	CF	Comparator Interrupt Flag. Set by hardware when the comparator output meet the conditions specified by the CM[2:0] bits and CEN is set. The flag must be cleared by software. The interrupt may be enabled/disabled by setting/clearing bit 6 of IE.
3	CEN	Enable Comparator. Set this bit to enable the comparator. Clearing this bit will force the comparator output low and prevent further events from setting CF.
2	CM2	See as below table.
1	CM1	See as below table.
0	CM0	See as below table.

Comparator Interrupt Mode Setting:

CM2	CM1	CM0	Interrupt Mode
0	0	0	Negative (Low) level
0	0	1	Positive edge
0	1	0	Toggle with debounce
0	1	1	Positive edge with debounce
1	0	0	Negative edge
1	0	1	Toggle
1	1	0	Negative edge with debounce
1	1	1	Positive (High) level

SERIAL PORT CONTROL

Bit:	7	6	5	4	3	2	1	0
	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI

SERIAL PORT CONTROL												
Bit:	7	6	5	4	3	2	1	0				
	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI				
М	nemonic: SC	CON					Ado	dress: 98h				
BIT	NAME	FUNCTIO	N									
7	SM0/FE	SFR deter described	t mode select mines wheth below. Whe it must be m	her this bit a n used as F	cts as SM0 E, this bit wi	or as FE. Th Il be set to ii	e operation	of SM0 is valid stop				
6	SM1	Serial Por	t mode seled	ct bit 1. See	table below.							
5	SM2	multiproce is set to 1, mode 1, if received. the serial	rocessors co essor commu then RI will SM2 = 1, th In mode 0, th port runs at a ity with the s	unication fea not be activ en RI will no ne SM2 bit o a divide by 1	ture in mode ated if the re- ot be activate controls the s 2 clock of the	e 2 and 3. In eceived 9th ed if a valid s serial port clo ne oscillator.	mode 2 or 3 data bit (RB stop bit was ock. If set to This gives	B) is 0. In not 0, then				

		divide by 4 of the oscillator clock. This results in faster synchronous serial communication.
4	REN	Receive enable:
		0: Disable serial reception.
		1: Enable serial reception.
3	TB8	This is the 9th bit to be transmitted in modes 2 and 3. This bit is set and cleared by software as desired.
2	RB8	In modes 2 and 3 this is the received 9th data bit. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0 it has no function.
1	TI	Transmit interrupt flag: This flag is set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in all other modes during serial transmission. This bit must be cleared by software.

Mode	SM0	SM1	Description	Length	Baud Rate
0	0	0	Synchronous	8	Tclk divided by 4 or 12
1	0	1	Asynchronous	10	Variable
2	1	0	Asynchronous	11	Tclk divided by 32 or 64
3	1	1	Asynchronous	11	Variable

SM1, SM0: Mode Select bits:

SERIAL DATA BUFFER

Bit:	7	6	5	4	3	2	1	0
	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
М	I	Address: 99h						

BIT	NAME	FUNCTION
7~0	SBUF	Serial data on the serial port is read from or written to this location. It actually consists of two separate internal 8-bit registers. One is the receive resister, and the other is the transmit buffer. Any read access gets data from the receive data buffer, while write access is to the transmit data buffer.

PORT 2

Bit:	7	6	5	4	3	2	1	0
	Sec.	-	-	-	-	-	P2.1	P2.0
N	Inemonic: P	2						Address: A0h

Mnemonic: P2

BIT	NAME	ALTERNATE FUNCTION				
7-2	- 50	Reserved				
1	P2.1	XTAL1 clock input pin.				
0	P2.0	XTAL2 or CLKOUT pin by alternative.				

AUX FUNCTION REGISTER 1