

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

W79E549/W79L549 Data Sheet

8-BIT MICROCONTROLLER

Table of Contents-

1.	GENERAL DESCRIPTION							
2.	FEAT	TURES	3					
3.	PIN C	CONFIGURATIONS	4					
4.	PIN D	DESCRIPTION	5					
5.	BLOC	BLOCK DIAGRAM						
6.	FUNC	FUNCTIONAL DESCRIPTION						
7.	MEM	ORY ORGANIZATION	10					
8.	INSTI	RUCTION	29					
	8.1	Instruction Timing	29					
		8.1.1 External Data Memory Access Timing	32					
9.	POW	ER MANAGEMENT	35					
10.	INTE	RRUPTS	38					
11.	PROC	GRAMMABLE TIMERS/COUNTERS	40					
	11.1	Timer/Counters 0 & 1	40					
	11.2	Timer/Counter 2						
	11.3	Pulse Width Modulated Outputs (PWM)	47					
	11.4	Watchdog Timer	50					
12.	SERI	AL PORT						
	12.1	Framing Error Detection						
	12.2	Multiprocessor Communications	59					
13.	TIME	D ACCESS PROTECTION	61					
14.	H/W F	REBOOT MODE (BOOT FROM 4K BYTES OF LDFLASH)	63					
15.	IN-SY	/STEM PROGRAMMING	64					
	15.1	The Loader Program Locates at LDFlash Memory	64					
	15.2	The Loader Program Locates at APFlash Memory	64					
16.	H/W \	WRITER MODE	65					
17.	SECU	JRITY BITS	66					
18.	ELEC	CTRICAL CHARACTERISTICS	67					
	18.1	Absolute Maximum Ratings	67					
	18.2	DC Characteristics	67					
	18.3	A.C. Characteristics	69					

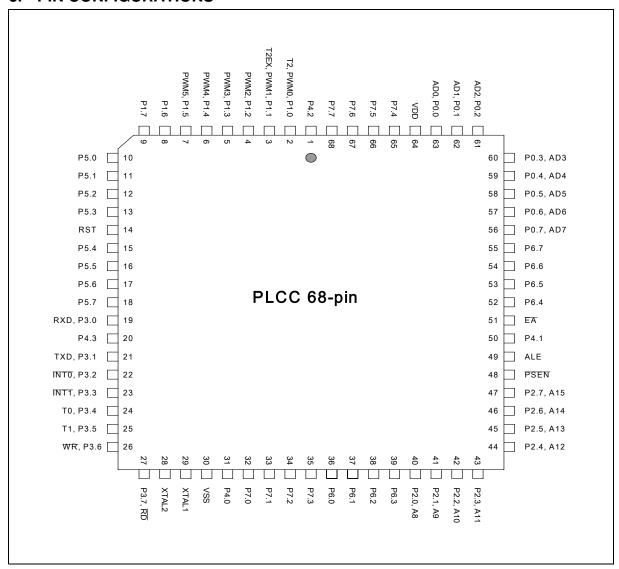
- 1 -

	18.3.1	A.C. Specification	69
	18.3.2	MOVX Characteristics Using Strech Memory Cycle	70
	18.3.3	Program Memory Read Cycle	71
	18.3.4	Data Memory Read Cycle	72
	18.3.5	Data Memory Write Cycle	72
19.	TYPICAL APP	LICATION CIRCUITS	73
20.	PACKAGE DI	MENSIONS	75
21.	APPLICATION	NOTE	76
22.	REVISION HIS	STORY	81

1. GENERAL DESCRIPTION

The W79E(L)549 is a fast 8051 compatible microcontroller with a redesigned processor core without wasted clock and memory cycles. As a result, it executes every 8051 instruction faster than the original 8051 for the same crystal speed. Typically, the instruction executing time of W79E(L)549 is 1.5 to 3 times faster than that of traditional 8051, depending on the type of instruction. In general, the overall performance is about 2.5 times better than the original for the same crystal speed. Giving the same throughput with lower clock speed, power consumption has been improved. Consequently, the W79E(L)549 is a fully static CMOS design; it can also be operated at a lower crystal clock. The W79E(L)549 contains In-System Programmable (ISP) 32 KB bank-addressed Flash EPROM; 4KB auxiliary Flash EPROM for loader program; on-chip 1 KB MOVX SRAM; power saving modes.

2. FEATURES


- 8-bit CMOS microcontroller
- High speed architecture of 4 clocks/machine cycle
- Pin compatible with standard 80C52
- Instruction-set compatible with MCS-51
- Seven 8-bit I/O Ports; Port 0 has internal pull-up resisters enabled by software
- One extra 4-bit I/O port, chip select
- Three 16-bit Timers
- 7 interrupt sources with two levels of priority
- On-chip oscillator and clock circuitry
- One enhanced full duplex serial port
- 32KB In-System Programmable Flash EPROM
- 4KB Auxiliary Flash EPROM for loader program (LDFlash)
- 256 bytes scratch-pad RAM
- 1 KB on-chip SRAM for MOVX instruction
- Programmable Watchdog Timer
- 6 channels of 8 bit PWM
- Software Reset
- Software programmable access cycle to external RAM/peripherals
- Code protection
- · Packages:
 - PLCC 68: W79E549A40PN, W79L549A25PN
 - Lead Free (RoHS)PLCC 68: W79E549A40PL, W79L549A25PL

- 3 -

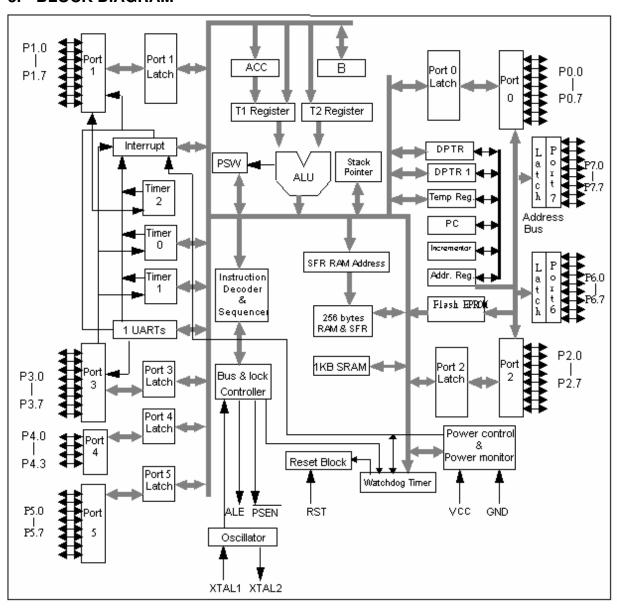
DEVICE	OPERATING	OPERATING	PAC	KAGE
]	FREQUENCY	VOLTAGE	NOMAL	LEAD FREE(ROHS)
W79E549	up to 40MHz	4.5V ~ 5.5V	PLCC68	PLCC68
W79L549	up to 25MHz	3.0V ~ 5.5V	PLCC68	PLCC68

3. PIN CONFIGURATIONS

4. PIN DESCRIPTION

SYMBOL	TYPE	DESCRIPTIONS					
ĒΑ	I	EXTERNAL ACCESS ENABLE: This pin forces the processor to execute out of external ROM. It should be kept high to access internal ROM. The ROM address and data will not be present on the bus if \overline{EA} pin is high and the program counter is within 32 KB area. Otherwise they will be present on the bus.					
PSEN	0	PROGRAM STORE ENABLE: PSEN enables the external ROM data onto the Port 0 address/data bus during fetch and MOVC operations. When internal ROM access is performed, no PSEN strobe signal outputs from this pin.					
ALE	0	ADDRESS LATCH ENABLE: ALE is used to enable the address latch that separates the address from the data on Port 0.					
RST	_	RESET: A high on this pin for two machine cycles while the oscillator is running resets the device.					
XTAL1	Ι	CRYSTAL1: This is the crystal oscillator input. This pin may be driven by an external clock.					
XTAL2	0	CRYSTAL2: This is the crystal oscillator output. It is the inversion of XTAL1.					
Vss	1	GROUND: Ground potential					
VDD	I	POWER SUPPLY: Supply voltage for operation.					
P0.0 – P0.7	I/O	PORT 0: Port 0 is an open-drain bi-directional I/O port. This port also provides a multiplexed low order address/data bus during accesses to external memory.					
		Port 0 has internal pull-up resisters enabled by software.					
	I/O	PORT 1: Port 1 is a bi-directional I/O port with internal pull-ups. The bits have alternate functions which are described below:					
P1.0 – P1.7		T2(P1.0): Timer/Counter 2 external count input					
		T2EX(P1.1): Timer/Counter 2 Reload/Capture/Direction control					
P2.0 – P2.7	I/O	PORT 2: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides the upper address bits for accesses to external memory.					

- 5 -


Pin Description, continued

SYMBOL	TYPE	DESCRIPTIONS
		PORT 3: Port 3 is a bi-directional I/O port with internal pull-ups. All bits have alternate functions, which are described below:
		RXD(P3.0) : Serial Port 0 input
		TXD(P3.1) : Serial Port 0 output
		INT0 (P3.2) : External Interrupt 0
P3.0 – P3.7	I/O	INT1 (P3.3): External Interrupt 1
		T0(P3.4) : Timer 0 External Input
		T1(P3.5) : Timer 1 External Input
		WR (P3.6) : External Data Memory Write Strobe
		RD (P3.7) : External Data Memory Read Strobe
P4.0 – P4.3	I/O	PORT 4: Port 4 is a 4-bit bi-directional I/O port. The P4.3 also provides the
F4.0 - F4.3	2	alternate function REBOOT which is H/W reboot from LD flash.
P5.0 – P5.7	I/O	PORT 5: Port 5 is a bi-directional I/O port with internal pull-ups.
P6.0 – P6.7	I/O	PORT6: Port 6 is a bi-directional I/O port with internal pull-ups.
P7.0 – P7.7	I/O	PORT 7: Port 7 is a bi-directional I/O port with internal pull-ups.

^{*} Note: TYPE I : input, O: output, I/O: bi-directional.

5. BLOCK DIAGRAM

- 7 -

6. FUNCTIONAL DESCRIPTION

The W79E(L)549 is 8052 pin compatible and instruction set compatible. It includes the resources of the standard 8052 such as four 8-bit I/O Ports, three 16-bit timer/counters, full duplex serial port and interrupt sources.

The W79E(L)549 features a faster running and better performance 8-bit CPU with a redesigned core processor without wasted clock and memory cycles. it improves the performance not just by running at high frequency but also by reducing the machine cycle duration from the standard 8052 period of twelve clocks to four clock cycles for the majority of instructions. This improves performance by an average of 1.5 to 3 times. It can also adjust the duration of the MOVX instruction (access to off-chip data memory) between two machine cycles and nine machine cycles. This flexibility allows the W79E(L)549 to work efficiently with both fast and slow RAMs and peripheral devices. In addition, the W79E(L)549 contains on-chip 1KB MOVX SRAM, the address of which is between 0000H and 03FFH. It only can be accessed by MOVX instruction; this on-chip SRAM is optional under software control.

The W79E(L)549 is an 8052 compatible device that gives the user the features of the original 8052 device, but with improved speed and power consumption characteristics. It has the same instruction set as the 8051 family. While the original 8051 family was designed to operate at 12 clock periods per machine cycle, the W79E(L)549 operates at a much reduced clock rate of only 4 clock periods per machine cycle. This naturally speeds up the execution of instructions. Consequently, the W79E(L)549 can run at a higher speed as compared to the original 8052, even if the same crystal is used. Since the W79E(L)549 is a fully static CMOS design, it can also be operated at a lower crystal clock, giving the same throughput in terms of instruction execution, yet reducing the power consumption.

The 4 clocks per machine cycle feature in the W79E(L)549 is responsible for a three-fold increase in execution speed. The W79E(L)549 has all the standard features of the 8052, and has a few extra peripherals and features as well.

I/O Ports

The W79E(L)549 has seven 8-bit ports and one extra 4-bit port. Port 0 can be used as an Address/Data bus when external program is running or external memory/device is accessed by MOVC or MOVX instruction. In these cases, it has strong pull-ups and pull-downs, and does not need any external pull-ups. Otherwise it can be used as a general I/O port with open-drain circuit. Port 2 is used chiefly as the upper 8-bits of the Address bus when port 0 is used as an address/data bus. It also has strong pull-ups and pull-downs when it serves as an address bus. Port 1 and 3 act as I/O ports with alternate functions. Port 4 serves as a general purpose I/O port as Port 1 and Port 3. Port5 ~ Port7 are bi-directional I/O ports with internal pull resisters.

Serial I/O

The W79E(L)549 has one enhanced serial ports that are functionally similar to the serial port of the original 8052 family. However the serial ports on the W79E(L)549 can operate in different modes in order to obtain timing similarity as well. The serial port has the enhanced features of Automatic Address recognition and Frame Error detection.

Timers

The W79E(L)549 has three 16-bit timers that are functionally similar to the timers of the 8052 family. When used as timers, they can be set to run at either 4 clocks or 12 clocks per count, thus providing the user with the option of operating in a mode that emulates the timing of the original 8052. The W79E(L)549 has an additional feature, the watchdog timer. This timer is used as a System Monitor or as a very long time period timer.

Interrupts

The Interrupt structure in the W79E(L)549 is slightly different from that of the standard 8052. Due to the presence of additional features and peripherals, the number of interrupt sources and vectors has been increased. The W79E(L)549 provides 7 interrupt resources with two priority level, including 2 external interrupt sources, timer interrupts, serial I/O interrupts.

Power Management

Like the standard 80C52, the W79E(L)549 also has IDLE and POWER DOWN modes of operation. In the IDLE mode, the clock to the CPU core is stopped while the timers, serial port and interrupts clock continue to operate. In the POWER DOWN mode, all the clock are stopped and the chip operation is completely stopped. This is the lowest power consumption state.

On-chip Data SRAM

The W79E(L)549 has 1K Bytes of data space SRAM which is read/write accessible and is memory mapped. This on-chip MOVX SRAM is reached by the MOVX instruction. It is not used for executable program memory. There is no conflict or overlap among the 256 bytes Scratchpad RAM and the 1K Bytes MOVX SRAM as they use different addressing modes and separate instructions. The on-chip MOVX SRAM is enabled by setting the DME0 bit in the PMR register. After a reset, the DME0 bit is cleared such that the on-chip MOVX SRAM is disabled, and all data memory spaces 0000H – FFFFH access to the external memory.

-9-

7. MEMORY ORGANIZATION

The W79E(L)549 separates the memory into two separate sections, the Program Memory and the Data Memory. The Program Memory is used to store the instruction op-codes, while the Data Memory is used to store data or for memory mapped devices.

Program Memory

On the standard 8051/52, only 64 KB of Program Memory can be addressed, and, in the W79E649, this area is the 32-KB Flash EPROM (AP Flash EPROM). All instructions are fetched from this area, and the MOVC instruction can also access this region. Pull $\overline{\mathsf{EA}}$ high to let the CPU fetch code in the embedded flash ROM, as long as the program counter is lower than 32K. When the program counter is higher than 32K, the CPU automatically fetches program code from extended external program memory.

There is an auxiliary 4-KB Flash EPROM (LD Flash EPROM), where the loader program for In-System Programming (ISP) resides. The AP Flash EPROM is re-programmed by serial or parallel download according to this loader program.

Data Memory

The W79E(L)549 can access up to 64Kbytes of external Data Memory. This memory region is accessed by the MOVX instructions. Unlike the 8051 derivatives, the W79E(L)549 contains on-chip 1K bytes MOVX SRAM of Data Memory, which can only be accessed by MOVX instructions. These 1K bytes of SRAM are between address 0000H and 03FFH. Access to the on-chip MOVX SRAM is optional under software control. When enabled by software, any MOVX instruction that uses this area will go to the on-chip RAM. MOVX addresses greater than 03FFH automatically go to external memory through Port 0 and 2. When disabled, the 1KB memory area is transparent to the system memory map. Any MOVX directed to the space between 0000H and FFFFH goes to the expanded bus on Port 0 and 2. This is the default condition. In addition, the W79E(L)549 has the standard 256 bytes of on-chip Scratchpad RAM. This can be accessed either by direct addressing or by indirect addressing. There are also some Special Function Registers (SFRs), which can only be accessed by direct addressing. Since the Scratchpad RAM is only 256 bytes, it can be used only when data contents are small. In the event that larger data contents are present, two selections can be used. One is on-chip MOVX SRAM, the other is the external Data Memory. The on-chip MOVX SRAM can only be accessed by a MOVX instruction, the same as that for external Data Memory, However, the on-chip RAM has the fastest access times.

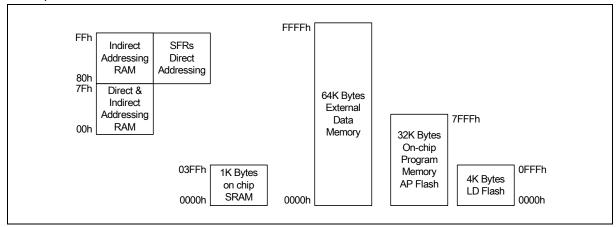


Figure 1. Memory Map

Special Function Registers

The W79E(L)549 uses Special Function Registers (SFRs) to control and monitor peripherals and their Modes.

The SFRs reside in the register locations 80-FFh and are accessed by direct addressing only. Some of the SFRs are bit addressable. This is very useful in cases where one wishes to modify a particular bit without changing the others. The SFRs that are bit addressable are those whose addresses end in 0 or 8. The W79E(L)549 contains all the SFRs present in the standard 8052. However, some additional SFRs have been added. In some cases unused bits in the original 8052 have been given new functions. The list of SFRs is as follows. The table is condensed with eight locations per row. Empty locations indicate that there are no registers at these addresses. When a bit or register is not implemented, it will read high.

Table 1. Special Function Register Location Table

F8	EIP							
F0	В							
E8	EIE							
E0	ACC							
D8	WDCON	PWMP	PWM0	PWM1	PWMCON1	PWM2	PWM3	
D0	PSW							
C8	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2	PWMCON2	PWM4
C0				PWM5	PMR	STATUS		TA
B8	IP	SADEN						
В0	P3	P5	P6	P7				
A8	IE	SADDR			SFRAL	SFRAH	SFDFD	SFRCN
A0	P2	XRAMAH	P4CSIN			P4		
98	SCON0	SBUF	P42AL	P42AH	P43AL	P43AH		CHPCON
90	P1		P4CONA	P4CONB	P40AL	P40AH	P41AL	P41AH
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	
80	P0	SP	DPL	DPH				PCON

- 11 -

Note: The SFRs in the column with dark borders are bit-addressable.

A brief description of the SFRs is shown follows.

Port 0

Bit: 7 6 5 3 2 0 4 1 P0.7 P0.6 P_{0.5} P0.4 P0.3 P0.2 P0.1 P0.0

Mnemonic: P0 Address: 80h

Port 0 is an open-drain bi-directional I/O port. This port also provides a multiplexed low order address/data bus during accesses to external memory. Besides, it has internal pull-up resisters enabled by setting P0UP of P4CSIN (A2H) to high.

Stack Pointer

Bit: 7 5 4 3 2 1 0 6 SP.7 SP.6 SP.5 SP.4 SP.0 SP.3 SP.2 SP.1

Mnemonic: SP Address: 81h

The Stack Pointer stores the Scratchpad RAM address where the stack begins. In other words, it always points to the top of the stack.

Data Pointer Low

Bit: 7 6 5 3 2 0 4 1 DPL.7 DPL.6 DPL.5 DPL.4 DPL.3 DPL.2 DPL.1 DPL.0

Mnemonic: DPL Address: 82h

This is the low byte of the standard 8052 16-bit data pointer.

Data Pointer High

Bit: 7 6 5 4 3 2 1 0 DPH.7 DPH.6 DPH.5 DPH.4 DPH.3 DPH.2 DPH.1 DPH.0

Mnemonic: DPH Address: 83h

This is the high byte of the standard 8052 16-bit data pointer.

Power Control

Bit: 7 6 5 4 3 2 1 0

SM0D SMOD0 - - GF1 GF0 PD IDL

Mnemonic: PCON Address: 87h

SMOD : This bit doubles the serial port baud rate in mode 1, 2, and 3 when set to 1.

SMOD0: Framing Error Detection Enable: When SMOD0 is set to 1, then SCON.7 indicates a Frame Error and acts as the FE flag. When SMOD0 is 0, then SCON.7 acts as per the standard 8052 function.

GF1-0: These two bits are general purpose user flags.

PD: Setting this bit causes the W79E(L)549 to go into the POWER DOWN mode. In this mode all the

clocks are stopped and program execution is frozen.

IDL: Setting this bit causes the W79E(L)549 to go into the IDLE mode. In this mode the clocks to the

CPU are stopped, so program execution is frozen. But the clock to the serial, timer and interrupt blocks is not stopped, and these blocks continue operating.

Timer Control

Bit:	7	6	5	4	3	2	1	0
	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

Mnemonic: TCON Address: 88h

TF1: Timer 1 overflow flag: This bit is set when Timer 1 overflows. It is cleared automatically when the program does a timer 1 interrupt service routine. Software can also set or clear this bit.

TR1: Timer 1 run control: This bit is set or cleared by software to turn timer/counter on or off.

TF0: Timer 0 overflow flag: This bit is set when Timer 0 overflows. It is cleared automatically when the program does a timer 0 interrupt service routine. Software can also set or clear this bit.

TR0: Timer 0 run control: This bit is set or cleared by software to turn timer/counter on or off.


IE1: Interrupt 1 edge detect: Set by hardware when an edge/level is detected on INT1. This bit is cleared by hardware when the service routine is vectored to only if the interrupt was edge triggered. Otherwise it follows the pin.

IT1: Interrupt 1 type control: Set/cleared by software to specify falling edge/ low level triggered external inputs.

IE0: Interrupt 0 edge detect: Set by hardware when an edge/level is detected on INT0. This bit is cleared by hardware when the service routine is vectored to only if the interrupt was edge triggered. Otherwise it follows the pin.

IT0: Interrupt 0 type control: Set/cleared by software to specify falling edge/ low level triggered external inputs.

Timer Mode Control

Mnemonic: TMOD Address: 89h

GATE: Gating control: When this bit is set, Timer/counter x is enabled only while INTx pin is high and TRx control bit is set. When cleared, Timer x is enabled whenever TRx control bit is set.

 C/\overline{T} : Timer or Counter Select: When cleared, the timer is incremented by internal clocks. When set , the timer counts high-to-low edges of the Tx pin.

M1, M0: Mode Select bits:

M1	MO	MODE
0	0	Mode 0: 8-bits with 5-bit prescale.
0	1	Mode 1: 18-bits, no prescale.
1	0	Mode 2: 8-bits with auto-reload from THx
1	1	Mode 3: (Timer 0) TL0 is an 8-bit timer/counter controlled by the standard Timer 0 control bits. TH0 is a 8-bit timer only controlled by Timer 1 control bits. (Timer 1) Timer/counter is stopped.

Timer 0 LSB

Bit: 7 6 5 4 3 2 1 0 TL0.7 TL0.5 TL0.4 TL0.3 TL0.2 TL0.1 TL0.6 TL0.0

Mnemonic: TL0 Address: 8Ah

TL0.7-0: Timer 0 LSB

Timer 1 LSB

Bit: 7 6 5 3 2 1 0 4 TL1.7 TL1.2 TL1.6 TL1.5 TL1.4 TL1.3 TL1.1 TL1.0

Mnemonic: TL1 Address: 8Bh

TL1.7-0: Timer 1 LSB

Timer 0 MSB

Bit: 7 6 5 4 3 2 1 0 TH0.7 TH0.6 TH0.5 TH0.4 TH0.3 TH_{0.2} TH_{0.1} TH0.0

Mnemonic: TH0 Address: 8Ch

TH0.7-0: Timer 0 MSB

Timer 1 MSB

Bit: 7 6 5 3 2 1 0 4 TH1.7 TH1.6 TH1.5 TH1.4 TH1.3 TH1.2 TH1.1 TH1.0

Mnemonic: TH1 Address: 8Dh

TH1.7-0: Timer 1 MSB

Clock Control

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 WD1
 WD0
 T2M
 T1M
 T0M
 MD2
 MD1
 MD0

Mnemonic: CKCON Address: 8Eh

WD1–0: Watchdog timer mode select bits: These bits determine the time-out period for the watchdog timer. In all four time-out options the reset time-out is 512 clocks more than the interrupt time-out period.

WD1	WD0	INTERRUPT TIME-OUT	RESET TIME-OUT
0	0	2 ¹⁷	2 ¹⁷ + 512
0	1	2 ²⁰	2 ²⁰ + 512
1	0	2 ²³	2 ²³ + 512
1	1	2 ²⁶	2 ²⁶ + 512

T2M: Timer 2 clock select: When T2M is set to 1, timer 2 uses a divide by 4 clock, and when set to 0 it uses a divide by 12 clock.

T1M: Timer 1 clock select: When T1M is set to 1, timer 1 uses a divide by 4 clock, and when set to 0 it uses a divide by 12 clock.

T0M: Timer 0 clock select: When T0M is set to 1, timer 0 uses a divide by 4 clock, and when set to 0 it uses a divide by 12 clock.

MD2–0: Stretch MOVX select bits: These three bits are used to select the stretch value for the MOVX instruction. Using a variable MOVX length enables the user to access slower external memory devices or peripherals without the need for external circuits. The $\overline{\text{RD}}$ or $\overline{\text{WR}}$ strobe will be stretched by the selected interval. When accessing the on-chip SRAM, the MOVX instruction is always in 2 machine cycles regardless of the stretch setting. By default, the stretch has value of 1. If the user needs faster accessing, then a stretch value of 0 should be selected.

MD2	MD1	MD0	Stretch value	MOVX duration
0	0	0	0	2 machine cycles
0	0	1	1	3 machine cycles (Default)
0	1	0	2	4 machine cycles
0	1	1	3	5 machine cycles
1	0	0	4	6 machine cycles
1	0	1	5	7 machine cycles
1	1	0	6	8 machine cycles
1	1	1	7	9 machine cycles

Port 1

Bit: 7 6 5 3 2 1 0 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

Mnemonic: P1 Address: 90h

P1.7–0: General purpose I/O port. Most instructions will read the port pins in case of a port read access, however in case of read-modify-write instructions, the port latch is read. Some pins also have alternate input or output functions. This alternate functions are described below:

P1.0 : T2 External I/O for Timer/Counter 2

P1.1 : T2EX Timer/Counter 2 Capture/Reload Trigger

Port 4 Control Register A

Bit: 7 6 5 4 3 2 1 0
P41M1 P41M0 P41C1 P41C0 P40M1 P40M0 P40C1 P40C0

Mnemonic: P4CONA Address: 92h

Port 4 Control Register B

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 P43M1
 P43M0
 P43C1
 P43C0
 P42M1
 P42M0
 P42C1
 P42C0

Mnemonic: P4CONB Address: 93h

BIT NAME	FUNCTION
	Port 4 alternate modes.
	=00: Mode 0. P4.x is a general purpose I/O port which is the same as Port 1.
P4xM1, P4xM0	=01: Mode 1. P4.x is a Read Strobe signal for chip select purpose. The address range depends on the SFR P4xAH, P4xAL and bits P4xC1, P4xC0.
T TAWIT, I TAWIO	=10: Mode 2. P4.x is a Write Strobe signal for chip select purpose. The address range depends on the SFR P4xAH, P4xAL and bits P4xC1, P4xC0.
	=11: Mode 3. P4.x is a Read/Write Strobe signal for chip select purpose. The address range depends on the SFR P4xAH, P4xAL and bits P4xC1, P4xC0
	Port 4 Chip-select Mode address comparison:
	=00: Compare the full address (16 bits length) with the base address registers P4xAH and P4xAL.
P4xC1, P4xC0	=01: Compare the 15 high bits (A15-A1) of address bus with the base address registers P4xAH and P4xAL.
	=10: Compare the 14 high bits (A15-A2) of address bus with the base address registers P4xAH and P4xAL.
	=11: Compare the 8 high bits (A15-A8) of address bus with the base address registers P4xAH and P4xAL.

P4.0 Base Address Low Byte Register

Bit:	7	6	5	4	3	2	1	0
	A7	A6	A5	A4	A3	A2	A1	A0

Mnemonic: P40AL Address: 94h

P4.0 Base Address High Byte Register

Bit:	7	6	5	4	3	2	1	0
	A15	A14	A13	A12	A11	A10	A9	A8

Mnemonic: P40AH Address: 95h

P4.1 Base Address Low Byte Register

Bit:	7	6	5	4	3	2	1	0
	A7	A6	A5	A4	A3	A2	A1	A0

Mnemonic: P41AL Address: 96h

P4.1 Base Address High Byte Register

Bit:	7	6	5	4	3	2	1	0
·	A15	A14	A13	A12	A11	A10	A9	A8

Mnemonic: P41AH Address: 97h

Serial Port Control

Bit:	7	6	5	4	3	2	1	0
	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI

Mnemonic: SCON Address: 98h

SM0/FE: Serial port 0, Mode 0 bit or Framing Error Flag: The SMOD0 bit in PCON SFR determines whether this bit acts as SM0 or as FE. The operation of SM0 is described below. When used

as FE, this bit will be set to indicate an invalid stop bit. This bit must be manually cleared in software to clear the FE condition.

SM1: Serial port Mode bit 1:

SM0	SM1	Mode	Description	Length	Baud rate
0	0	0	Synchronous	8	4/12 Tclk
0	1	1	Asynchronous	10	Variable
1	0	2	Asynchronous	11	64/32 Tclk
1	1	3	Asynchronous	11	Variable

- 17 -

Publication Release Date: December 11, 2005 Revision A1

SM2: Multiple processors communication. Setting this bit to 1 enables the multiprocessor communication feature in mode 2 and 3. In mode 2 or 3, if SM2 is set to 1, then RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if SM2 = 1, then RI will not be activated if a valid stop bit was not received. In mode 0, the SM2 bit controls the serial port clock. If set to 0, then the serial port runs at a divide by 12 clock of the oscillator. This gives compatibility with the standard 8052. When set to 1, the serial clock become divide by 4 of the oscillator clock. This results in faster synchronous serial communication.

REN: Receive enable: When set to 1 serial reception is enabled, otherwise reception is disabled.

TB8: This is the 9th bit to be transmitted in modes 2 and 3. This bit is set and cleared by software as desired.

RB8: In modes 2 and 3 this is the received 9th data bit. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0 it has no function.

TI: Transmit interrupt flag: This flag is set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in all other modes during serial transmission. This bit must be cleared by software.

RI: Receive interrupt flag: This flag is set by hardware at the end of the 8th bit time in mode 0, or halfway through the stop bits time in the other modes during serial reception. However the restrictions of SM2 apply to this bit. This bit can be cleared only by software.

Serial Data Buffer

Bit: 7 6 5 4 3 2 1 0

SBUF.7 SBUF.6 SBUF.5 SBUF.4 SBUF.3 SBUF.2 SBUF.1 SBUF.0

Mnemonic: SBUF Address: 99h

SBUF.7-0: Serial data on the serial port 0 is read from or written to this location. It actually consists of two separate internal 8-bit registers. One is the receive resister, and the other is the transmit buffer. Any read access gets data from the receive data buffer, while write access is to the transmit data buffer.

P4.2 Base Address Low Byte Register

Bit: 7 6 5 3 2 0 4 1 Α7 A6 A5 **A4 A3** A2 Α1 Α0

Mnemonic: P42AL Address: 9Ah

P4.2 Base Address High Byte Register

Bit: 2 7 5 3 0 6 4 1 A15 Α9 A14 A13 A12 A11 A10 **A8**

Mnemonic: P42AH Address: 9Bh

P4.3 Base Address Low Byte Register

Bit: 5 0 7 6 4 3 2 1 Α7 Α5 А3 Α2 Α1 A6 Α4 Α0

Mnemonic: P43AL Address: 9Ch

P4.3 Base Address High Byte Register

Bit: 7 5 4 3 2 1 0 A15 A14 A13 A12 A11 A10 Α9 **A8**

Mnemonic: P43AH Address: 9Dh

ISP Control Register

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 SWRST/HWB
 LDAP
 LDSEL
 ENP

Mnemonic: CHPCON Address: 9Fh

SWRST/HWB: Set this bit to launch a whole device reset that is same as asserting high to RST pin, micro controller will be back to initial state and clear this bit automatically. To read this bit, its alternate function to indicate the ISP hardware reboot mode is invoking when read it in high.

LDAP: This bit is Read Only. High: device is executing the program in LDFlash. Low: device is executing the program in APFlashs.

LDSEL: Loader program residence selection. Set to high to route the device fetching code from LDFlash.

ENP: In System Programming Mode Enable. Set this be to launch the ISP mode. Device will operate ISP procedures, such as Erase, Program and Read operations, according to correlative SFRs settings. During ISP mode, device achieves ISP operations by the way of IDLE state. In the other words, device is not indeed in IDLE mode is set bit PCON.1 while ISP is enabled. Clear this bit to disable ISP mode, device get back to normal operation including IDLE state.

Software Reset

Set CHPCON = 0X83, timer and enter IDLE mode. CPU will reset and restart from APFlash after time out.

Port 2

Bit: 6 5 4 3 2 1 0 P2.7 P2.6 P2.5 P2.4 P2.2 P2.1 P2.3 P2.0

Mnemonic: P2 Address: A0h

P2.7-0: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides the upper address bits for accesses to external memory.

- 19 -

Port 4 Chip-select Polarity

Bit: 7 6 5 4 3 2 1 0
P43INV P42INV P42INV P40INV - - P0UP

Mnemonic: P4CSIN Address: A2h

P4xINV: The active polarity of P4.x when set it as chip-select signal. High = Active High. Low = Active

Low

P0UP: Enable Port 0 weak pull up.

Port 4

Bit: 7 6 5 4 3 2 1 0
- - - P4.3 P4.2 P4.1 P4.0

Mnemonic: P4 Address: A5h

P4.3-0: Port 4 is a bi-directional I/O port with internal pull-ups. Port 4 can not use bit-addressable instruction (SETB or CLR).

Interrupt Enable

Bit: 5 3 2 1 0 7 6 4 ES1 EΑ ET2 ES ET1 EX1 ET0 EX0

Mnemonic: IE Address: A8h

EA: Global enable. Enable/disable all interrupts.

ET2: Enable Timer 2 interrupt.

ES: Enable Serial Port 0 interrupt.

ET1: Enable Timer 1 interrupt

EX1: Enable external interrupt 1

ET0: Enable Timer 0 interrupt

EX0: Enable external interrupt 0

Slave Address

Bit: 7 6 5 4 3 2 1 0

Mnemonic: SADDR Address: A9h

SADDR: The SADDR should be programmed to the given or broadcast address for serial port 0 to which the slave processor is designated.

ISP Address Low Byte

Bit: 7 5 3 0 6 4 2 1 Α7 A6 **A5 A4** А3 A2 Α1 Α0

Mnemonic: SFRAL Address: ACh

Low byte destination address for In System Programming operation. SFRAH and SFRAL address a specific ROM byte for erasure, programming or read.

ISP Address High Byte

Bit: 7 6 5 4 3 2 1 0 A10 Α9 A15 A14 A13 A12 A11 **8**A

Mnemonic: SFRAH Address: ADh

High byte destination address for In System Programming operation. SFRAH and SFRAL address a specific ROM byte for erasure, programming or read.

ISP Data Buffer

Bit: 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0

Mnemonic: SFRFD Address: AEh

In ISP mode, read/write a specific byte ROM content must go through SFRFD register.

ISP Operation Modes

Bit: 7 6 5 4 3 2 1 0 **BANK WFWIN** NOE NCE CTRL3 CTRL2 CTRL1 CTRL0

Mnemonic: SFRCN Address: AFh

- 21 -

WFWIN: Destination ROM bank for programming, erasure and read. 0 = APFlash, 1 = LDFlash.

NOE: Flash EPROM output enable. NCE: Flash EPROM chip enable.

CTRL[3:0]: Mode Selection.

ISP MODE	BANK	WFWIN	NOE	NCE	CTRL<3:0>	SFRAH, SFRAL	SFRFD
Erase 4KB LD Flash EPROM	0	1	1	0	0010	X	х
Erase 32K AP Flash EPROM	0	0	1	0	0010	X	Х
Program 4KB LD Flash EPROM	0	1	1	0	0001	Address in	Data in
Program 32 K AP Flash EPROM	0	0	1	0	0001	Address in	Data in
Read 4KB LD Flash EPROM	0	1	0	0	0000	Address in	Data out
Read 32 K AP Flash EPROM	0	0	0	0	0000	Address in	Data out

Port 3

Bit: 7 6 5 4 3 2 1 0 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0

Mnemonic: P3 Address: B0h

P3.7-0: General purpose I/O port. Each pin also has an alternate input or output function. The alternate functions are described below.

P3.7 $\overline{\mathsf{RD}}$ Strobe for read from external RAM P3.6 WR Strobe for write to external RAM P3.5 T1 Timer/counter 1 external count input T0 P3.4 Timer/counter 0 external count input INT1 P3.3 External interrupt 1 P3.2 ĪNT0 External interrupt 0 TxDP3.1 Serial port 0 output P3.0 RxDSerial port 0 input

Port 5

Bit: 7 6 5 0 4 3 2 1 P5.7 P5.6 P5.5 P5.4 P5.3 P5.2 P5.1 P5.0

Mnemonic: P5 Address: B1h

P5.7-0: General purpose I/O port. Port 5 can not use bit-addressable instruction (SETB or CLR).

Demo code:

ORL P5,#00000010B ; Set P5.1=H

ANL P5,#11111101B ; Clear P5.1=L

Port 6

Bit: 7 5 0 6 4 3 2 1 P6.7 P6.6 P6.5 P6.4 P6.3 P6.2 P6.1 P6.0

Mnemonic: P6 Address: B2h

P6.7-0: General purpose I/O port. Port 6 can not use bit-addressable instruction (SETB or CLR).

Port 7

Bit: 7 6 5 3 2 1 0 4 P7.7 P7.6 P7.5 P7.4 P7.3 P7.2 P7.1 P7.0

Mnemonic: P7 Address: B3h

P7.7-0: General purpose I/O port. Port 7 can not use bit-addressable instruction (SETB or CLR).

Interrupt Priority

Bit: 7 6 5 4 3 2 1 0

- PT2 PS PT1 PX1 PT0 PX0

Mnemonic: IP Address: B8h

IP.7: This bit is un-implemented and will read high.

PT2: This bit defines the Timer 2 interrupt priority. PT2 = 1 sets it to higher priority level.

PS: This bit defines the Serial port 0 interrupt priority. PS = 1 sets it to higher priority level.

PT1: This bit defines the Timer 1 interrupt priority. PT1 = 1 sets it to higher priority level.

PX1: This bit defines the External interrupt 1 priority. PX1 = 1 sets it to higher priority level.

PT0: This bit defines the Timer 0 interrupt priority. PT0 = 1 sets it to higher priority level.

PX0: This bit defines the External interrupt 0 priority. PX0 = 1 sets it to higher priority level.

Slave Address Mask Enable

Bit: 7 6 5 4 3 2 1 0

Mnemonic: SADEN Address: B9h

SADEN: This register enables the Automatic Address Recognition feature of the Serial port 0. When a bit in the SADEN is set to 1, the same bit location in SADDR will be compared with the incoming serial data. When SADEN.n is 0, then the bit becomes a "don't care" in the comparison. This register enables the Automatic Address Recognition feature of the Serial port 0. When all the bits of SADEN are 0, interrupt will occur for any incoming address.

Power Management Register

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	ALE-OFF	-	DME0

Mnemonic: PMR Address: C4h

ALEOFF: This bit disables the expression of the ALE signal on the device pin during all on-board program and data memory accesses. External memory accesses will automatically enable ALE independent of ALEOFF.

0 = ALE expression is enable; 1 = ALE expression is disable

DME0: This bit determines the on-chip MOVX SRAM to be enabled or disabled. Set this bit to 1 will enable the on-chip 1KB MOVX SRAM.

Status Register

Bit:	7	6	5	4	3	2	1	0
	ı	HIP	LIP	-	ı	ı	ı	-

Mnemonic: STATUS Address: C5h

HIP: High Priority Interrupt Status. When set, it indicates that software is servicing a high priority interrupt. This bit will be cleared when the program executes the corresponding RETI instruction.

LIP: Low Priority Interrupt Status. When set, it indicates that software is servicing a low priority interrupt. This bit will be cleared when the program executes the corresponding RETI instruction.

Timed Access

Bit: 7 6 5 4 3 2 1 0 TA.7 TA.6 TA.5 TA.4 TA.2 TA.1 TfA.0 TA.3

Mnemonic: TA Address: C7h

TA: The Timed Access register controls the access to protected bits. To access protected bits, the user must first write AAH to the TA. This must be immediately followed by a write of 55H to TA. Now a window is opened in the protected bits for three machine cycles, during which the user can write to these bits.

Timer 2 Control

Bit:	7	6	5	4	3	2	1	0
	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C / T2	CP/RL2

Mnemonic: T2CON Address: C8h

- TF2: Timer 2 overflow flag: This bit is set when Timer 2 overflows. It is also set when the count is equal to the capture register in down count mode. It can be set only if RCLK and TCLK are both 0. It is cleared only by software. Software can also set or clear this bit.
- EXF2: Timer 2 External Flag: A negative transition on the T2EX pin (P1.1) or timer 2 overflow will cause this flag to set based on the CP / RL2, EXEN2 and DCEN bits. If set by a negative transition, this flag must be cleared by software. Setting this bit in software or detection of a negative transition on T2EX pin will force a timer interrupt if enabled.
- RCLK: Receive Clock Flag: This bit determines the serial port 0 time-base when receiving data in serial modes 1 or 3. If it is 0, then timer 1 overflow is used for baud rate generation, otherwise timer 2 overflow is used. Setting this bit forces timer 2 in baud rate generator mode.
- TCLK: Transmit Clock Flag: This bit determines the serial port 0 time-base when transmitting data in modes 1 and 3. If it is set to 0, the timer 1 overflow is used to generate the baud rate clock otherwise timer 2 overflow is used. Setting this bit forces timer 2 in baud rate generator mode.
- EXEN2: Timer 2 External Enable. This bit enables the capture/reload function on the T2EX pin if Timer 2 is not generating baud clocks for the serial port. If this bit is 0, then the T2EX pin will be ignored, otherwise a negative transition detected on the T2EX pin will result in capture or reload.
- TR2: Timer 2 Run Control. This bit enables/disables the operation of timer 2. Clearing this bit will halt the timer 2 and preserve the current count in TH2, TL2.
- C / T2 : Counter/Timer Select. This bit determines whether timer 2 will function as a timer or a counter. Independent of this bit, the timer will run at 2 clocks per tick when used in baud rate generator mode. If it is set to 0, then timer 2 operates as a timer at a speed depending on T2M bit (CKCON.5), otherwise it will count negative edges on T2 pin.
- CP / RL2: Capture/Reload Select. This bit determines whether the capture or reload function will be used for timer 2. If either RCLK or TCLK is set, this bit will be ignored and the timer will function in an auto-reload mode following each overflow. If the bit is 0 then auto-reload will occur when timer 2 overflows or a falling edge is detected on T2EX pin if EXEN2 = 1. If this bit is 1, then timer 2 captures will occur when a falling edge is detected on T2EX pin if EXEN2 = 1.

Timed 2 Mode Control

Bit: 7 6 5 4 3 2 1 0
- - - T2CR - DCEN

Mnemonic: T2MOD Address: C9h

T2CR: Timer 2 Capture Reset. In the Timer 2 Capture Mode this bit enables/disables hardware automatically reset Timer 2 while the value in TL2 and TH2 have been transferred into the capture register.

Publication Release Date: December 11, 2005 - 25 - Revision A1