

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

W79E659A/W79L659A DATA SHEET

8-BIT MICROCONTROLLER

Table of Contents-

1.	GENE	ERAL DESCRIPTION	4
2.	FEAT	URES	4
3.	PIN C	CONFIGURATION	5
4.	PIN D	DESCRIPTION	6
	4.1	Port 4	7
5.	MEM	ORY ORGANIZATION	
	5.1	Program Memory (on-chip Flash)	
	5.2	Data Memory	
6.	SPEC	CIAL FUNCTION REGISTERS	
7.	INSTI	RUCTION SET	41
	7.1	Instruction Timing	
		7.1.1 External Data Memory Access Timing	
8.	POW	ER MANAGEMENT	
	8.1	Idle Mode	
	8.2	Power Down Mode	54
9.	RESE	T	55
	9.1	Reset Conditions	55
	9.2	External Reset	55
	9.3	Power-On Reset (POR)	
	9.4	Watchdog Timer Reset	55
	9.5	Reset State	56
10.	INTER	RRUPTS	57
	10.1	Interrupt Sources	57
	10.2	Priority Level Structure	58
11.	PROC	GRAMMABLE TIMERS/COUNTERS	59
	11.1	Timer/Counters 0 & 1	59
		11.1.1 Time-Base Selection	59
		11.1.2 Mode 0	59
		11.1.3 Mode 1	60
		11.1.4 Mode 2	
		11.1.5 Mode 3	
	11.2	Timer/Counter 2	
		11.2.1 Capture Mode	
		11.2.2 Auto-reload Mode, Counting up	
		11.2.3 Auto-reload Mode, Counting Up/Down	
10	\A/A - /	11.2.4 Baud Rate Generator Mode	
12.	WAI	CHDOG TIMER	65

nuvoTon

13.	PULS	E-WIDTI	H-MODULATED (PWM)	68
14.	SERIA	AL PORT	Γ	70
	14.1	Mode (0	70
	14.2	Mode ¹	1	71
	14.3	Mode 2	2	72
	14.4	Mode 3	3	73
	14.5	Framin	ng Error Detection	74
	14.6		rocessor Communications	
15.	I2C S		ORTS	
	15.1	The I2	C Control Registers	76
		15.1.1	Slave Address Registers, I2ADDRxx	
		15.1.2	Data Register, I2DAT	77
		15.1.3	Control Register, I2CONx	
		15.1.4	Status Register, I2STATUSx	78
		15.1.5	I2C Clock Baud Rate Control, I2CLKx	79
		15.1.6	I2C Time-out Counter, I2Timerx	79
	15.2		s of Operation	79
		15.2.1	Master Transmitter Mode	
		15.2.2	Master Receiver Mode	
		15.2.3	Slave Receiver Mode	
		15.2.4	Slave Transmitter Mode	
	15.3		ransfer Flow in Four Operating Modes	
		15.3.1	Master/Transmitter Mode	
		15.3.2	Master/Receiver Mode	
		15.3.3	Slave/Transmitter Mode	
		15.3.4	Slave/Receiver Mode	
10	A N I A I	15.3.5	GC Mode	
16.			DIGITAL CONVERTER	
	16.1	•	tion of ADC	
	16.2		Resolution and Analog Supply	
4.7	16.3		Control Registers	
17.			SS PROTECTION	
18.			JCTURE	
19.			MODE (BOOT FROM 4K BYTES OF LDFLASH)	
20.			PROGRAMMING	
	20.1		pader Program Locates at LDFlash Memory	
	20.2		pader Program Locates at APFlash Memory	
21.	H/W V	VRITER	MODE	96
22.	SECU	IRITY BI	TS	97
23.	ELEC	TRICAL	CHARACTERISTICS	99
	23.1	Absolu	ute Maximum Ratings	99
	23.2	DC Ch	naracteristics	99
	23.3	AC Ch	paraetorietice	100

nuvoTon

		23.3.1	External Clock Characteristics	101
		23.3.2	AC Specification	101
		23.3.3	MOVX Characteristics Using Stretch Memory Cycle	102
	23.4	The Al	DC Converter DC ELECTRICAL CHARACTERISTICS	103
	23.5	Progra	am Memory Read Cycle	105
	23.6	Data M	Nemory Read Cycle	105
	23.7	Data M	Nemory Write Cycle	106
24.	TYPIC	CAL APP	PLICATION CIRCUITS	107
	24.1		ded External Program Memory and Crystal	
	24.2	Expan	ded External Data Memory and Oscillator	107
25.	PACK	AGE DI	MENSIONS	108
	25.1	100L C	QFP(14x20x2.75mm footprint 4.8mm)	108
26.			NOTE	
27	VERS	SION HIS	STORY	2 (0) 915

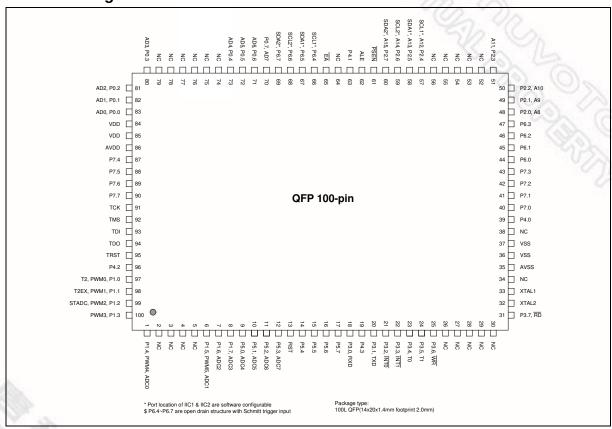
1. General Description

The W79E659 is a fast, 8051/52-compatible microcontroller with a redesigned processor core that eliminates wasted clock and memory cycles. Typically, the W79E659 executes instructions 1.5 to 3 times faster than that of the traditional 8051/52, depending on the type of instruction, and the overall performance is about 2.5 times better at the same crystal speed. As a result, with the fully-static CMOS design, the W79E659 can accomplish the same throughput with a lower clock speed, reducing power consumption.

The W79E659 provides 256 bytes of on-chip RAM; 1-KB of auxiliary RAM; seven 8-bit, bi-directional and bit-addressable I/O ports; an additional 4-bit port P4; three 16-bit timer/counters; an UART serial port, 2 channels of I2C with master/slave capability and 8 channels of 10-bit ADC. These peripherals are all supported by ten interrupt sources with 2 levels of priority.

The W79E659 contains a 32-KB Flash EPROM whose contents may be updated in-system by a loader program stored in an auxiliary, 4-KB Flash EPROM. Once the contents are confirmed, it can be protected for security.

Note: If the applied V_{DD} is not stable, especially with long transition time of power on/off, it's recommended to apply an external RESET IC to the RST pin for improving the stability of system.


2. Features

- Fully-static-design 8-bit Turbo 51 CMOS microcontroller up to 40MHz
- 32-KB of in-system-programmable Flash EPROM (AP Flash EPROM with ISP)
- 4-KB of Auxiliary Flash EPROM for the loader program (LD Flash EPROM)
- 1-KB auxiliary RAM, software-selectable, accessed by MOVX instruction
- 256 bytes of scratch-pad RAM
- Seven 8-bit bi-directional ports
- All pins with Schmitt trigger inputs
- One 4-bit multipurpose I/O port4 with Chips select(CS) and boot function
- Three 16-bit timers
- 6 channels of 8-bit PWM
- One enhanced full-duplex UART with framing-error detection and automatic address recognition
- 2-channels of I2C with master/slave capability
- 10-bit ADC with 8-channel inputs
- Software programmable access cycle to external RAM/peripherals
- 10 interrupt sources with two levels of priority
- Software reset function
- Optional H/L state of ALE/PSEN during power down mode
- Built-in power management
- Code protection
- Development tool
 - JTAG ICE(In Circuit Emulator) tool
- Packages:
 - Lead Free(RoHS) QFP 100: W79E659A40FL, W79L659A25FL

DEVICE	OPERATING	OPERATING	PACKAGE		
5262	FREQUENCY	VOLTAGE LEAD FREE(RO			
W79E659A40FL	up to 40MHz	4.5V ~ 5.5V	QFP100		
W79L659A25FL	up to 25MHz	3.0V ~ 4.5V	QFP100		

3. Pin Configuration

4. PIN DESCRIPTION

SYMBOL	TYPE ¹	DESCRIPTIONS							
ĒĀ	1	EXTERNAL ACCESS ENABLE: This pin forces the processor to execute the external ROM. The ROM address and data are not presented on the							
		bus if the EA pin is high.							
PSEN	ОН	PROGRAM STORE ENABLE: PSEN enables the external ROM data in the Port 0 address/data bus. When internal ROM access is performed, no PSEN strobe signal outputs originate from this pin.							
ALE	ОН	ADDRESS LATCH ENABLE: ALE enables the address latch that separates the address from the data on Port 0.							
RST	IL	RESET: Set this pin high for two machine cycles while the oscillator i unning to reset the device.							
XTAL1	1	CRYSTAL 1: Crystal oscillator input or external clock input.							
XTAL2	0	CRYSTAL 2: Crystal oscillator output.							
V _{SS}	1	GROUND: ground potential.							
V_{DD}	1	POWER SUPPLY: Supply voltage for operation.							
AV _{SS}	1	Analog GROUND: for ADC							
AV_{DD}	I	Analog Power Supply: for ADC							
P0.0-P0.7	I/O D S H	PORT 0: 8-bit, bi-directional I/O port with internal pull-up resisters. This port also provides a multiplexed, low-order address / data bus during accesses to external memory.							
P1.0-P1.7	I/O S H	PORT 1: 8-bit, bi-directional I/O port with internal pull-up resistors. This port also provides alternate functions as below. P1.0 ~ P1.5 provide PWM0 ~ PWM5. P1.4 ~ P1.7 provide ADC0 ~ ADC3. P1.0 alternately provides Timer2 external count input.(T2) P1.1 alternately provides Timer2 Reload/Capture/Direction control.(T2Ex)							
P2.0-P2.7	I/O S H	PORT 2: 8-bit, bi-directional I/O port with internal pull-ups. This port also provides the upper address bits when accessing external memory. P2.4 to P2.7 can be software configured as I2C serial ports							
A COLOR	ž	PORT 3: 8-bit, bi-directional I/O port with internal pull-up resistors. All bits have alternate functions, which are described below: RXD (P3.0): Serial Port 0 input TXD (P3.1): Serial Port 0 output							
	I/O	INT0 (P3.2): External Interrupt 0							
P3.0-P3.7	SH	INT1(P3.3): External Interrupt 1 T0 (P3.4):Timer 0 External Input T1 (P3.5):Timer 1 External Input							
	90	WR (P3.6): External Data Memory Write Strobe							
	4	RD (P3.7): External Data Memory Read Strobe							

PIN DESCRIPTION, continued

SYMBOL	TYPE	DESCRIPTIONS
D4 0 D4 0	I/O	PORT 4: 4-bit bi-directional I/O port. The P4.3 also provides the alternate
P4.0-P4.3	SH	function REBOOT which is H/W reboot from LD flash.
P5.0-P5.7	I/O H	PORT 5: A bi-directional I/O port with internal pull-ups. This port is not bit-addressable. The alternate functions of P5.0 to P5.3 are inputs of ADC4 to ADC7.
P6.0-P6.7	I/O D H	PORT 6: A bi-directional I/O port with internal pull-ups. This port is not bit-addressable. Pins P6.4 to P6.7 are open drain type and can be software configured as the I2C ports.
P7.0-P7.7	I/O H	PORT 7: A bi-directional I/O port with internal pull-ups. This port is not bit-addressable.
TCK ²	ΙH	Used in debug mode with internal pull-up
TMS ²	ΙH	Used in debug mode with internal pull-up
TDI ²	ΙH	Used in debug mode with internal pull-up
TDO ²	ΟL	Used in debug mode with internal weakly pull-low
TRST ²	ΙH	Used in debug mode with internal pull-up

Note: 1. TYPE I: input, O: output, I/O: bi-directional, H: pull-high, L: pull-low, D: open drain S: Schmitt Trigger

2. Keep debug pins in NC(no connection) if chip is not in debug mode.

4.1 Port 4

SFR P4 at address A5H, is a 4-bit multipurpose programmable I/O port which functions are I/O, insert wait function and chip-select function. The Port 4 has four different operation modes:

In mode 0, P4.0 \sim P4.3 is a 4-bit bi-directional I/O port which is the same as port 1. The default Port 4 is a general I/O function.

In mode1, P4.0 \sim P4.3 are read data strobe signals which are synchronized with \overline{RD} signal at specified addresses. These read data strobe signals can be used as chip-select signals for external peripherals.

In mode2, P4.0 $^{\sim}$ P4.3 are write data strobe signals which are synchronized with $\overline{\text{WR}}$ signal at specified addresses. These write data strobe signals can be used as chip-select signals for external peripherals.

In mode3, P4.0 \sim P4.3 are read/write data strobe signals which are synchronized with $\overline{\text{RD}}$ or $\overline{\text{WR}}$ signal at specified addresses. These read/write data strobe signals can be used as chip-select signals for external peripherals.

In mode1~mode3, Port 4 is configured with the feature of chip-select signals, the address range for chip-select signals depends on the contents of registers P4xAH and P4xAL, which contain the high-order byte and low-order byte, respectively, of the 16-bit address comparator for P4.x. The registers P4CONA and P4CONB contain the control bits to configure the Port 4 operation mode. This is illustrated in the following schematic.

Publication Release Date: Oct 08, 2010 Revision A5.0

- 7

nuvoTon

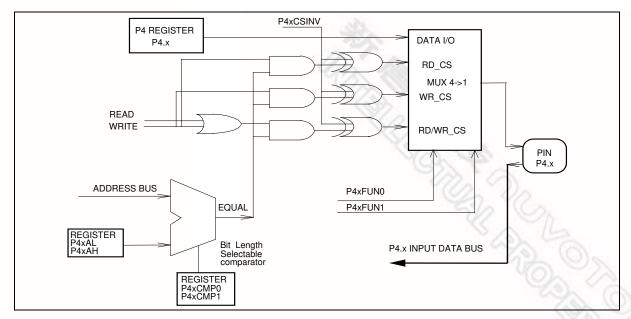


Figure 4-1

For example, the following program sets up P4.0 as a write-strobe signal for I/O port addresses 1234H – 1237H with positive polarity, while P4.1 – P4.3 are used as general I/O ports.

MOV P40AH, #12H

MOV P40AL, #34H : Base I/O address 1234H for P4.0

MOV P4CONA, #00001010B ; P4.0 is a write-strobe signal; address lines A0 and A1 are masked.

MOV P4CONB, #00H ; P4.1 – P4.3 are general I/O ports

MOV P2ECON, #10H ; Set P40SINV to 1 to invert the P4.0 write-strobe to positive polarity.

Then, any instruction MOVX @DPTR, A (where DPTR is in 1234H - 1237H) generates a positive-polarity, write-strobe signal on pin P4.0, while the instruction MOV P4, #XX puts bits 3-1 of data #XX on pins P4.3 - P4.1.

5. Memory Organization

The W79E659 separates the memory into two separate sections, the Program Memory and the Data Memory. Program Memory stores instruction op-codes, while Data Memory stores data or memory-mapped devices.

5.1 Program Memory (on-chip Flash)

On the standard 8051/52, only 64 KB of Program Memory can be addressed, and, in the W79E659, this area is the 32-KB Flash EPROM (AP Flash EPROM). All instructions are fetched from this area, and the MOVC instruction can also access this region. Pull $\overline{\sf EA}$ high to let the CPU fetch code in the embedded flash ROM, as long as the program counter is lower than 32K. When the program counter is higher than 32K, the CPU automatically fetches program code from extended external program memory.

There is an auxiliary 4-KB Flash EPROM (LD Flash EPROM), where the loader program for In-System Programming (ISP) resides. The AP Flash EPROM is re-programmed by serial or parallel download according to this loader program.

5.2 Data Memory

The W79E659 can access up to 64Kbytes of external Data Memory. This memory region is accessed by the MOVX instructions. Unlike the 8051 derivatives, the W79E659 contains on-chip 1K-bytes of Data Memory, which only can be accessed by MOVX instructions. The 1-Kbytes of SRAM located between address 0000h and 03FFh is enabled by setting DMEO bit of PMR register. If MOVX instruction accesses the addresses greater than 03FFh CPU will automatically access external memory through Port 0 and 2. In default condition the 1K-bytes SRAM is disabled and any MOVX directed to the space between 0000h and FFFFh goes to the expanded bus on the Port 0 and 2. The W79E659 also has the standard 256 bytes of on-chip Scratchpad RAM. This can be accessed either by direct addressing or by indirect addressing. There are also some Special Function Registers (SFRs), which can only be accessed by direct addressing. Since the Scratchpad RAM is only 256 bytes, it can be used only when data contents are small.

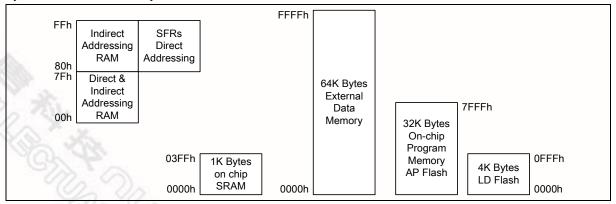


Figure 5-1 Memory Map

6. Special Function Registers

The W79E659 uses Special Function Registers (SFR) to control and monitor peripherals. The SFR reside in register locations 80-FFh and are only accessed by direct addressing. The W79E659 contains all the SFR present in the standard 8051/52, as well as some additional SFR, and, in some cases, unused bits in the standard 8051/52 have new functions. SFR whose addresses end in 0 or 8 (hex) are bit-addressable. The following table of SFR is condensed, with eight locations per row. Empty locations indicate that there are no registers at these addresses. When a bit or register is not implemented, it reads high.

Table 6-1 Special Function Register Location Table

F8	EIP	I2CON2	I2ADDR20	I2ADDR21	I2DATA2	I2STATUS2	I2CLK2	I2TIMER2
F0	В					-3		7
E8	EIE	I2CON	I2ADDR10	I2ADDR11	I2DATA	I2STATUS	I2CLK	12TIMER
E0	ACC						350	162
D8	WDCON	PWMP	PWM0	PWM1	PWMCON1	PWM2	PWM3	2
D0	PSW							WDCON2
C8	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2	PWMCON2	PWM4
C0	ADDCO N	ADCL	ADCH	PWM5	PMR	STATUS	ADCPS	TA
В8	IP	SADEN						
В0	P3	P5	P6	P7				
A8	IE	SADDR			SFRAL	SFRAH	SFRFD	SFRCN
A0	P2	XRAMAH	P4CSIN			P4		
98	SCON	SBUF	P42AL	P42AH	P43AL	P43AH		CHPCON
90	P1		P4CONA	P4CONB	P40AL	P40AH	P41AL	P41AH
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	
80	P0	SP	DPL	DPH				PCON

^{1.} The SFRs in the column with dark borders are bit-addressable

^{2.} The table is condensed with eight locations per row. Empty locations indicate that these are no registers at these addresses. When a bit or register is not implemented, it will read high.

nuvoTon

Table 6-2 Special Function Registers

SYMBOL	DEFINITION	ADDR ESS	M	SB I	BIT_AD	DRESS	, SYME	BOL	LS	SB	RESET
I2TIMER2	I2C2 Timer Counter Register	FFH	-	-	1000		> _	ENTI2	DIV42	TIF2	0000 0000B
I2CLK2	I2C2 Clock Rate	FEH	I2CLK.7	I2CLK.6	I2CLK.5	I2CLK.4	I2CLK.3	I2CLK.2	I2CLK.1	I2CLK.0	0000 0000B
I2STATUS2	I2C2 Status Register	FDH				W.	0 ×	QK.	-	-	0000 0000B
I2DAT2	I2C2 Data	FCH	I2DAT.7	I2DAT.6	I2DAT.5	I2DAT.4	I2DAT.3	I2DAT.2	I2DAT.1	I2DAT.0	xxxx xxxxxB
I2ADDR21	I2C2 Slave Address1	FBH	ADDR.7	ADDR.6	ADDR.5	ADDR.4	ADDR.3	ADDR.2	ADDR.1	-	xxxx xxxxxB
I2ADDR20	I2C2 Slave Address0	FAH	ADDR.7	ADDR.6	ADDR.5	ADDR.4	ADDR.3	ADDR.2	ADDR.1	GC	xxxx xxxx0B
I2CON2	I2C2 Control Register	F9H	-	ENS2	STA	STO	SI	АА	(O)	PSEL2	x000 00x0B
EIP	Extended Interrupt Priority	F8H	(FF) -	(FE) -	(FD) -	(FC) PWDI	(FB) -	(FA) -	(F9) PI2C2	(F8) PI2C1	0000 0000B
PCH	PC Counter high register	F2H								9	00000000E
PCL	PC Counter low register	F1H								a.	0000000B
В	B Register	F0H	(F7)	(F6)	(F5)	(F4)	(F3)	(F2)	(F1)	(F0)	0000 0000B
I2TIMER	I2C1 Timer Counter Register	EFH	-	-	-	-	-	ENTI	DIV4	TIF	0000 0000B
I2CLK	I2C1 Clock Rate	EEH	I2CLK.7	I2CLK.6	I2CLK.5	I2CLK.4	I2CLK.3	I2CLK.2	I2CLK.1	I2CLK.0	0000 0000B
I2STATUS	I2C1 Status Register	EDH						-	-	-	0000 0000B
I2DAT	I2C1 Data	ECH	I2DAT.7	I2DAT.6	I2DAT.5	I2DAT.4	I2DAT.3	I2DAT.2	I2DAT.1	I2DAT.0	xxxx xxxxxB
I2ADDR11	I2C1 Slave Address1	EBH	ADDR.7	ADDR.6	ADDR.5	ADDR.4	ADDR.3	ADDR.2	ADDR.1	-	xxxx xxxxxB
I2ADDR10	I2C1 Slave Address0	EAH	ADDR.7	ADDR.6	ADDR.5	ADDR.4	ADDR.3	ADDR.2	ADDR.1	GC	xxxx xxxx0B
I2CON	I2C1 Control Register	E9H	-	ENS1	STA	STO	SI	AA	-	-	x000 00x0B
EIE	Extended Interrupt Enable	E8H	(EF) -	(EE) -	(ED) -	(EC) EWDI	(EB) -	(EA) -	(E9) EI2C2	(E8) EI2C1	0000 0000B
ACC	Accumulator	E0H	(E7)	(E6)	(E5)	(E4)	(E3)	(E2)	(E1)	(E0)	0000 0000B
PWM3	PWM3 Output	DEH									0000 0000B
PWM2	PWM2 Output	DDH									0000 0000B
PWMCON1	PWM Control Register1	DCH	PWM3O E	PWM2O E	ENPWM 3	ENPWM 2	PWM1O E	PWM0O E	ENPWM 1	ENPWM 0	0000 0000B
PWM1	PWM1 Output	DBH									0000 0000B
PWM0	PWM0 Output	DAH									0000 0000B
PWMP	PWM Pre-scale Register	D9H									0000 0000B
WDCON	Watch-Dog Control	D8H	(DF) -	(DE) POR	(DD) -	(DC) -	(DB) WDIF	(DA) WTRF	(D9) EWT	(D8) RWT	0100 0000B
WDCON2	Watch-Dog Control2	D7H	-	-	-	-	-	-	-	STRLD	0000 0000B
PSW	Program Status Word	D0H	(D7) CY	(D6) AC	(D5) F0	(D4) RS1	(D3) RS0	(D2) OV	(D1) F1	(D0) P	0000 0000B

Table 6-3 Special Function Registers, continued

SYMBOL	DEFINITION	ADDRE SS	MS	SB E	BIT_AD	DRESS	, SYMB	OL	LS	SB	RESET
PWM4	PWM4 Output	CFH			U	1111					0000 0000B
PWMCON2	PWM Control Register 2	CEH	-	-	- <	37 A	PWM5O E	PWM40 E	ENPWM 5	ENPW M4	0000 0000B
TH2	T2 reg. High	CDH				W	Ox	35			0000 0000B
TL2	T2 reg. Low	CCH					(C)	1.12			0000 0000B
RCAP2H	T2 Capture Low	СВН					9	20	3		0000 0000B
RCAP2L	T2 Capture High	CAH						51		24	0000 0000B
T2MOD	Timer 2 Mode	C9H	-	-	-	-	T2CR	- 70	-//	DCEN	xxxx 0xx0B
T2CON	Timer 2 Control	C8H	(CF) TF2	(CE) EXF2	(CD) RCLK	(CC) TCLK	(CB) EXEN2	(CA) TR2	(C9) C/T2	(C8) CP/RL2	0000 0000B
TA	Time Access Register	C7H							4	9	0000 0000B
ADCPS	ADC Input Pin Switch	С6Н	ADCPS. 7	ADCPS.	ADCPS. 5	ADCPS.	ADCPS.	ADCPS. 2	ADCPS.	ADCPS.	0000 0000B
STATUS	Status Register	C5H	-	HIP	LIP	-	-	-	-	-	x00x xxxxB
PMR	Power Management Register	C4H	-	-	-	-	-	ALEOF F	-	DME0	xxxx x0x0B
PWM5	PWM5 Output	СЗН									0000 0000B
ADCH	ADC converter Result High Byte	C2H	ADC.9	ADC.8	ADC.7	ADC.6	ADC.5	ADC.4	ADC.3	ADC.2	xxxx xxxxxB
ADCL	ADC converter Result Low Byte	C1H	ADCLK1	ADCLK 0	-	-	-	-	ADC.1	ADC.0	00xx xxxxxB
ADCCON	ADC Control Register	C0H	ADCEN	-	ADCEX	ADCI	ADCS	AADR2	AADR1	AADR0	0x000000B
SADEN	Slave Address Mask	В9Н									0000 0000B
IP	Interrupt Priority	В8Н	(BF) -	(BE) PADC	(BD) PT2	(BC) PS	(BB) PT1	(BA) PX1	(B9) PT0	(B8) PX0	x000 0000B
P7	Port 7	взн									1111 1111B
P6	Port 6	B2H									1111 1111B
P5	Port 5	B1H									1111 1111B
P3	Port 3	вон	(B7) RD	(B6) WR	(B5) T1	(B4) T0	(B3) INT1	(B2) INT0	(B1) TXD	(B0) RXD	1111 1111B
SFRCN	F/W Flash Control	AFH	0	WFWIN	NOE	NCE	CTRL3	CTRL2	CTRL1	CTRL0	0011 1111B
SFRFD	F/W Flash Data	AEH									xxxx xxxxxB
SFRAH	F/W Flash High Address	ADH									0000 0000B
SFRAL	F/W Flash Low Address	ACH									0000 0000B
SADDR	Slave Address	А9Н									0000 0000B
IE	Interrupt Enable	A8H	(AF) EA	(AE) EADC	(AD) ET2	(AC) ES	(AB) ET1	(AA) EX1	(A9) ET0	(A8) EX0	0000 0000B
P4	Port 4	A5H	-	-	-	-					xxxx 1111B

Table 6-4 Special Function Registers, continued

SYMBOL	DEFINITION	ADDRE SS	MS	SB E	BIT_AD	DRESS	, SYMB	OL	LS	SB	RESET
P4CSIN	P4 CS SIGN	A2H	P43CSI NV	P42CSI NV	P41CSI NV	P40CSI NV		PWDNH	RMWFP	-	0000 0000B
XRAMAH	RAM High byte Address	A1H	-	-	- ~	9	-200	į	0	0	0000 0000B
P2	Port 2	A0H	(A7) A15	(A6) A14	(A5) A13	(A4) A12	(A3) A11	(A2) A10	(A1) A9	(A0) A8	1111 1111B
CHPCON	On chip Programming Control	9FH	SWRST/ REBOO T	-	LD/AP	-	0	0	LDSEL	ENP	0000 0000B
P43AH	HI Addr. Comparator of P4.3	9DH					- (20	40		0000 0000B
P43AL	LO Addr. Comparator of P4.3	9CH						3/3		n	0000 0000B
P42AH	HI Addr. Comparator of P4.2	9BH							60%	5	0000 0000B
P42AL	LO Addr. Comparator of P4.2	9AH							4	0	0000 0000B
SBUF	Serial Buffer	99H								50	xxxx xxxxxB
SCON	Serial Control	98H	(9F) SM0/FE	(9E) SM1	(9D) SM2	(9C) REN	(9B) TB8	(9A) RB8	(99) TI	(98) RI	0000 0000B
P41AH	HI Addr. Comparator of P4.1	97H									0000 0000B
P41AL	LO Addr. Comparator of P4.1	96H									0000 0000B
P40AH	HI Addr. Comparator of P4.0	95H									0000 0000B
P40AL	LO Addr. Comparator of P4.0	94H									0000 0000B
P4CONB	P4 Control Register	93H	P43FUN 1	P43FUN 0	P43CM P1	P43CM P0	P42FUN 1	P42FUN 0	P42CM P1	P42CM P0	0000 0000B
P4CONA	P4 Control Register	92H	P41FUN 1	P41FUN 0	P41CM P1	P41CM P0	P40FUN 1	P40FUN 0	P40CM P1	P40CM P0	0000 0000B
P1	Port 1	90H	(97)	(96)	(95)	(94)	(93) TXD_1	(92) RXD_1	(91) T2EX	(90) T2	1111 1111B
CKCON	Clock Control	8EH	WD1	WD0	T2M	T1M	ТОМ	MD2	MD1	MD0	0000 0001B
TH1	Timer High 1	8DH									0000 0000B
ТН0	Timer High 0	8CH									0000 0000B
TL1	Timer Low 1	8BH									0000 0000B
TL0	Timer Low 0	8AH									0000 0000B
TMOD	Timer Mode	89H	GATE	C/T	M1	МО	GATE	C/T	M1	M0	0000 0000B
TCON	Timer Control	88H	(8F) TF1	(8E) TR1	(8D) TF0	(8C) TR0	(8B) IE1	(8A) IT1	(89) IE0	(88) IT0	0000 0000B
PCON	Power Control	87H	SMOD	SMOD0	-	-	GF1	GF0	PD	IDL	00xx 0000B
DPH	Data Pointer High	83H									0000 0000B
DPL	Data Pointer Low	82H									0000 0000B

Table 6-5 Special Function Registers, continued

SYMBOL	DEFINITION	ADDRE SS	MS	SB E	BIT_ADI	DRESS	, ЅҮМВ	OL	LS	RESET	
SP	Stack Pointer	81H			V)	10	P				0000 0111B
P0	Port 0	80H	(87)	(86)	(85)	(84)	(83)	(82)	(81)	(80)	1111 1111B

Note: In column BIT_ADDRESS, SYMBOL, containing () item means the bit address.

PORT 0

Bit: 7 6 5 4 3 2 1 0
P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0

Mnemonic: P0 Address: 80h

Port 0 is bi-directional I/O port after chip is reset. Besides, it has internal pull-up resisters. This port also provides a multiplexed, low-order address/data bus when the W79E659 accesses external memory.

STACK POINTER

Bit: 7 6 5 4 3 2 1 0 SP.7 SP.6 SP.5 SP.4 SP.3 SP.2 SP.1 SP.0

Mnemonic: SP Address: 81h

The Stack Pointer stores the address in Scratchpad RAM where the stack begins. It always points to the top of the stack.

DATA POINTER LOW

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 DPL.7
 DPL.6
 DPL.5
 DPL.4
 DPL.3
 DPL.2
 DPL.1
 DPL.0

Mnemonic: DPL Address: 82h

This is the low byte of the standard-8051/52, 16-bit data pointer.

DATA POINTER HIGH

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 DPH.7
 DPH.6
 DPH.5
 DPH.4
 DPH.3
 DPH.2
 DPH.1
 DPH.0

Mnemonic: DPH Address: 83h

This is the low byte of the standard-8051/52, 16-bit data pointer.

POWER CONTROL

Bit: 7 6 5 4 3 2 1 0 SMOD SMOD - - GF1 GF0 PD IDL

Mnemonic: PCON Address: 87h

BIT	NAME	FUNCTION							
7	SMOD	1: This bit doubles the serial-port baud rate in modes 1, 2 and 3.							
6	SMOD0	0: Disable Framing Error Detection. SCON.7 acts as per the standard 8051/52 function.							
0		1: Enable Framing Error Detection. SCON.7 indicates a Frame Error and acts as the FE flag.							
5-4	1	Reserved							
3	GF1	General-purpose user flag.							
2	GF0	General-purpose user flag.							
1	PD 1: Go into POWER DOWN mode. In this mode, all clocks and program execution stopped.								
0		1: Go into IDLE mode. In this mode, the CPU clock stops, so program execution stops too. However, the clock to the serial port, ADC, PWM timer and interrupt blocks does not stop, so these blocks continue operating.							

TIMER CONTROL

Bit:

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

Mnemonic: TCON Address: 88h

BIT	NAME	FUNCTION		
7	TF1	Timer 1 overflow flag: This bit is set when Timer 1 overflows. It is cleared automatically when the program executes the Timer-1 interrupt service routine. Software can also set or clear this bit.		
6	TR1	Timer 1 run control: This bit turns the Timer 1 on or off by setting TR1 to 1 or 0.		
5	TF0	Timer 0 overflow flag: This bit is set when Timer 0 overflows. It is cleared automatically when the program executes the Timer-0 interrupt service routine. Software can also set or clear this bit.		
4	Timer 0 run control: This bit turns Timer 0 on or off by setting TR0 to 1 or 0.			
Interrupt 1 Edge Detect: Set by hardware when an edge / level is detected as IE1 Interrupt 1 Edge Detect: Set by hardware when an edge / level is detected as IE1 This bit is cleared by the hardware when the ISR is executed only if the edge-triggered. Otherwise, it follows the pin.				
2	IT1	Interrupt 1 type control: Specify falling-edge or low-level trigger for $\overline{\text{INT1}}$.		
1	Interrupt 0 Edge Detect: Set by hardware when an edge / level is detected on this bit is cleared by the hardware when the ISR is executed only if the integration edge-triggered. Otherwise, it follows the pin.			
0	IT0	Interrupt 0 type control: Specify falling-edge or low-level trigger for INT0.		

TIMER MODE CONTROL

Bit: 6 5 3 1 0 M0 **GATE** M1 **GATE** M1 M0 C/T C/T TIMER1 TIMER0

Mnemonic: TMOD Address: 89h

BIT	NAME	FUNCTION
7	GATE	Gating control: When this bit is set, Timer 1 is enabled only while the $\overline{\text{INT1}}$ pin is high and the TR1 control bit is set. When cleared, the $\overline{\text{INT1}}$ pin has no effect, and Timer 1 is enabled whenever TR1 is set.
6	Timer or Counter Select: When clear, Timer 1 is incremented by the internal When set, the timer counts falling edges on the T1 pin.	
5	M1	Timer 1 mode select bit 1. See table below.
4	M0	Timer 1 mode select bit 0. See table below.
3	GATE	Gating control: When this bit is set, Timer 0 is enabled only while the $\overline{\text{INT0}}$ pin is high and the TR0 control bit is set. When cleared, the $\overline{\text{INT0}}$ pin has no effect, and Timer 0 is enabled whenever TR0 is set.
2	C/T	Timer or Counter Select: When clear, Timer 0 is incremented by the internal clock. When set, the timer counts falling edges on the T0 pin.
1	M1	Timer 0 mode select bit 1. See table below.
0	M0	Timer 0 mode select bit 0. See table below.

M1, M0: Mode Select bits:

M1 M0 Mode

0 Mode 0: 8-bit timer/counter TLx serves as 5-bit pre-scale.

0 1 Mode 1: 16-bit timer/counter, no pre-scale.

1 0 Mode 2: 8-bit timer/counter with auto-reload from THx

1 1 Mode 3:

(Timer 0) TL0 is an 8-bit timer/counter controlled by the standard Timer-0 control bits. TH0 is an 8-bit timer only controlled by Timer-1 control bits.

(Timer 1) Timer/Counter 1 is stopped.

TIMER 0 LSB

Bit: 6 5 4 3 2 1 0 TL0.7 TL0.6 TL0.5 TL0.4 TL0.3 TL0.2 TL0.1 TL0.0

Mnemonic: TL0 Address: 8Ah

TL0.7-0 Timer 0 LSB

TIMER 1 LSB

3 Bit: 6 5 2 0 TL1.7 TL1.5 TL1.4 TL1.2 TL1.0 TL1.6 TL1.3 TL1.1

Mnemonic: TL1 Address: 8Bh

TL1.7-0 Timer 1 LSB

TIMER 0 MSB

Bit: 3 5 TH0.7 TH0.6 TH0.5 TH0.4 TH0.3 TH0.2 TH0.1 TH0.0

Mnemonic: TH0 Address: 8Ch

TH0.7-0 Timer 0 MSB

TIMER 1 MSB

Bit: 6 5 3 2 0 TH1.7 TH1.6 TH1.5 TH1.4 TH1.3 TH1.2 TH1.1 TH1.0

Mnemonic: TH1 Address: 8Dh

Timer 1 MSB TH1.7-0

CLOCK CONTROL

Bit: 5 4 3 2 0 6 1 WD1 WD0 T2M T1M T0M MD2 MD1 MD0

Address: 8Eh Mnemonic: CKCON

BIT	NAME	FUNCTION
7	WD1	Watchdog Timer mode select bit 1. See table below.
6	WD0	Watchdog Timer mode select bit 0. See table below.
5		Timer 2 clock select: 1: divide-by-4 clock 0: divide-by-12 clock
4	300	Timer 1 clock select: 1: divide-by-4 clock 0: divide-by-12 clock
3	- / / / /	Timer 0 clock select: 1: divide-by-4 clock 0: divide-by-12 clock

Publication Release Date: Oct 08, 2010 Revision A5.0

- 17 -

Continued

BIT	NAME	FUNCTION		
		Stretch MOVX select bit 2:		
		MD2, MD1, and MD0 select the stretch value for the MOVX instruction. The $\overline{\text{RD}}$ or		
2	MD2	WR strobe is stretched by the selected interval, which enables the W79E659 to access faster or slower external memory devices or peripherals without the need for external circuits. By default, the stretch value is one. See table below.		
		(Note: When accessing on-chip SRAM, these bits have no effect, and the MOVX instruction always takes two machine cycles.)		
1	MD1	Stretch MOVX select bit 1. See MD2.		
0	MD0	Stretch MOVX select bit 0. See MD2.		

WD1, WD0: Mode Select bits:

These bits determine the time-out periods for the Watchdog Timer. The reset time-out period is 512 clocks more than the interrupt time-out period.

WD1	WD0	INTERRUPT TIME-OUT	RESET TIME-OUT
0	0	2 ¹⁷	2 ¹⁷ + 512
0	1	2 ²⁰	2 ²⁰ + 512
1	0	2 ²³	2 ²³ + 512
1	1	2 ²⁶	2 ²⁶ + 512

MD2, MD1, MD0: Stretch MOVX select bits:

MD2	MD1	MD0	STRETCH VALUE	MOVX DURATION
0	0	0	0	2 machine cycles
0	0	1	1	3 machine cycles (Default)
0	1	0	2	4 machine cycles
0	1	1	3	5 machine cycles
1	0	0	4	6 machine cycles
	0	1	5	7 machine cycles
V 132	1	0	6	8 machine cycles
0 133	6 1	1	7	9 machine cycles

PORT 1

Bit: 7 6 5 3 2 1 0 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

Mnemonic: P1 Address: 90h

P1.7-0: General-purpose digital input port or analog input port AD0~AD7. For digital input, port-read instructions read the port pins, while read-modify-write instructions read the port latch. Additional functions are described below.

	ALTERNATE FUNCTION1	ALTERNATE FUNCTION2	ALTERNATE FUNCTION3
P1.0	T2: External input for Timer/Counter 2	PWM0: PWM output ch0	-
P1.1	T2EX: Timer/Counter 2 Capture/Reload Trigger	PWM1: PWM output ch1	-
P1.2	STADC: External rising edge input to start ADC	PWM2: PWM output ch2	-
P1.3	-	PWM3: PWM output ch3	-
P1.4	-	PWM4: PWM output ch4	ADC0: Analog input0
P1.5	-	PWM5: PWM output ch5	ADC1: Analog input1
P1.6	-	- 57	ADC2: Analog input2
P1.7	-	- 8	ADC3: Analog input3

Port 4 Control Register A

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 P41M1
 P41M0
 P41C1
 P41C0
 P40M1
 P40M0
 P40C1
 P40C0

Mnemonic: P4CONA Address: 92h

Port 4 Control Register B

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 P43M1
 P43M0
 P43C1
 P43C0
 P42M1
 P42M0
 P42C1
 P42C0

Mnemonic: P4CONB Address: 93h

BIT NAME	FUNCTION
	Port 4 alternate modes.
	=00: Mode 0. P4.x is a general purpose I/O port which is the same as Port 1.
P4xM1, P4xM0	=01: Mode 1. P4.x is a Read Strobe signal for chip select purpose. The address range depends on the SFR P4xAH, P4xAL and bits P4xC1, P4xC0.
T HAINT, T HAINTO	=10: Mode 2. P4.x is a Write Strobe signal for chip select purpose. The address range depends on the SFR P4xAH, P4xAL and bits P4xC1, P4xC0.
	=11: Mode 3. P4.x is a Read/Write Strobe signal for chip select purpose. The address range depends on the SFR P4xAH, P4xAL and bits P4xC1, P4xC0
76.	Port 4 Chip-select Mode address comparison:
10 XX	=00: Compare the full address (16 bits length) with the base address registers P4xAH and P4xAL.
P4xC1, P4xC0	=01: Compare the 15 high bits (A15-A1) of address bus with the base address registers P4xAH and P4xAL.
	=10: Compare the 14 high bits (A15-A2) of address bus with the base address registers P4xAH and P4xAL.
8	=11: Compare the 8 high bits (A15-A8) of address bus with the base address registers P4xAH and P4xAL.

P4.0 Base Address Low Byte Register

Bit: 7 6 5 4 3 2 1 0 A7 A6 A5 A4 A3 A2 A1 A0

Mnemonic: P40AL Address: 94h

P4.0 Base Address High Byte Register

Bit: 7 6 5 4 3 2 1 0 A15 A14 A13 A12 A11 A10 A9 A8

Mnemonic: P40AH Address: 95h

P4.1 Base Address Low Byte Register

Bit:

7 6 5 4 3 2 1 0 A7 A6 A5 A4 A3 A2 A1 A0

Mnemonic: P41AL Address: 96h

P4.1 Base Address High Byte Register

Bit: 7 6 5 4 1 0 3 A15 A13 A12 Α9 A14 A11 A10 **A8**

Mnemonic: P41AH Address: 97h

Serial Port Control

Bit: 7 6 5 4 3 2 1 0

SM0/FE SM1 SM2 REN TB8 RB8 TI RI

Mnemonic: SCON Address: 98h

BIT	NAME	FUNCTION
7	SM0/FE	Serial Port mode select bit 0 or Framing Error Flag: This bit is controlled by the SMOD0 bit in the PCON register. (SM0) See table below. (FE) This bit indicates an invalid stop bit. It must be manually cleared by software.
6	SM1	Serial Port mode select bit 1. See table below.
5	SM2	Serial Port Clock or Multi-Processor Communication. (Mode 0) This bit controls the serial port clock. If set to zero, the serial port runs at a divide-by-12 clock of the oscillator. This is compatible with the standard 8051/52. If set to one, the serial clock is a divide-by-4 clock of the oscillator. (Mode 1) If SM2 is set to one, RI is not activated if a valid stop bit is not received. (Modes 2 / 3) This bit enables multi-processor communication. If SM2 is set to one, RI is not activated if RB8, the ninth data bit, is zero.
4		Receive enable: 1: Enable serial reception 0: Disable serial reception
3	TB8	(Modes 2 / 3) This is the 9th bit to transmit. This bit is set by software.

Continued

BIT	NAME	FUNCTION
2	RB8	(Mode 0) No function. (Mode 1) If SM2 = 0, RB8 is the stop bit that was received. (Modes 2 / 3) This is the 9th bit that was received.
1		Transmit interrupt flag: This flag is set by the hardware at the end of the 8th bit in mode 0 or at the beginning of the stop bit in the other modes during serial transmission. This bit must be cleared by software.
0		Receive interrupt flag: This flag is set by the hardware at the end of the 8th bit in mode 0 or halfway through the stop bits in the other modes during serial reception. However, SM2 can restrict this behavior. This bit can only be cleared by software.

SM0, SM1: Mode Select bits:

SM0	SM1	MODE	DESCRIPTION	LENGTH	BAUD RATE
0	0	0	Synchronous	8	Tclk divided by 4 or 12
0	1	1	Asynchronous	10	Variable
1	0	2	Asynchronous	11	Tclk divided by 32 or 64
1	1	3	Asynchronous	11	Variable

Serial Data Buffer

Bit: 7 6 5 4 3 2 1 0
SBUF.7 SBUF.6 SBUF.5 SBUF.4 SBUF.3 SBUF.2 SBUF.1 SBUF.0

Mnemonic: SBUF Address: 99h

SBUF.7-0 Serial data is read from or written to this location. It actually consists of two separate 8-bit registers. One is the receive buffer, and the other is the transmit buffer. Any read access gets data from the receive data buffer, while write access is to the transmit data buffer.

P4.2 Base Address Low Byte Register

Bit: 7 6 5 3 2 0 4 1 Α7 Α5 Α4 АЗ A2 Α1 Α0 A6

Mnemonic: P42AL Address: 9Ah

P4.2 Base Address High Byte Register

Bit: 7 6 5 4 3 2 1 0
A15 A14 A13 A12 A11 A10 A9 A8

Mnemonic: P42AH Address: 9Bh

P4.3 Base Address Low Byte Register

Bit: 7 6 5 4 3 2 1 0
A7 A6 A5 A4 A3 A2 A1 A0

Mnemonic: P43AL Address: 9Ch

P4.3 Base Address High Byte Register

Bit: 7 6 5 4 3 2 1 0
A15 A14 A13 A12 A11 A10 A9 A8

Mnemonic: P43AH Address: 9Dh

ISP Control Register

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 SWRST /HWB
 LD/AP
 LDSEL
 ENP

Mnemonic: CHPCON Address: 9Fh

BIT	NAME	FUNCTION					
7		Write access to this bit is different from read access.					
	W:SWRST R:HWB	Set this bit to reset the device. This has the same effect as asserting the RST pin. The microcontroller returns to its initial state, and this bit is cleared automatically.					
		Reading this bit indicates whether or not the device is in ISP hardware reboot mode.					
6	-	Reserved					
_	LD/AP	0: CPU is executing AR Flash EPROM					
5	(read-only)	1: CPU is executing LD Flash EPROM					
4-2	-	Reserved					
	LDSEL	Load ROM Location Selection. This bit should be set before entering ISP mode.					
1	(write-only)	1: Run the program in LD Flash EPROM.					
		0: Run the program in AP Flash EPROM.					
		In System Program Enable.					
0	ENP	1: Enable in-system programming mode. The erase, program and read operations are executed according to various SFR settings. In this mode, the device runs in IDLE state, so PCON.1 has no effect.					
		0: Disable in-system programming mode. The device returns to normal operations, and PCON.1 is functional again.					

The way to enter ISP mode is to set ENP to 1 and write LDSEL properly then force CPU in IDLE mode, after IDLE mode is released CPU will restart from AP or LD ROM according the value of LDSEL.

PORT 2

Bit: 7 6 5 4 3 2 1 0 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

Mnemonic: P2 Address: A0h

P2.7-0: Port 2 is a bi-directional I/O port with internal pull-up resistors. This port also provides the upper address bits for accesses to external memory.

Port 4 Chip-select Polarity

Bit: 7 6 5 4 3 2 1 0
P43INV P42INV P42INV P40INV - PWDNH RMWFP -

Mnemonic: P4CSIN Address: A2h

BIT	NAME	FUNCTION
7-4	P4xINV	The Active Polarity of P4.x as P4.x is set as a chip-select strobe output. 1: Active High. 0: Active Low.
3	-	Reserved
2	PWDNH	Set ALE and PSEN state in power down mode. 1: ALE and PSEN output logic high in power down mode 0: ALE and PSEN output logic low in power down mode.
1	RMWFP	Control Read Path of Instruction "Read-Modify-Write". When this bit is set, the read path of executing "read-modify-write" instruction is from port pin otherwise from SFR.
0	-	Reserved

PORT 4

Bit: 7 6 5 4 3 2 1 0 - - - - P4.3 P4.2 P4.1 P4.0

Mnemonic: P4 Address: A5h

P4.3-0: Port 4 is a bi-directional I/O port with internal pull-ups.

Interrupt Enable

Bit: 6 5 4 3 2 0 1 EΑ **EADC** ET2 ES ET1 EX1 ET0 EX0

Mnemonic: IE Address: A8h

BIT	NAME	FUNCTION		
7	EA	Global enable. Enable/disable all interrupts.		
6	EADC	Enable ADC interrupt.		
5	ET2	Enable Timer 2 interrupt.		
4	ES	Enable Serial Port interrupt.		
3	ET1	Enable Timer 1 interrupt.		
2	EX1	Enable external interrupt 1.		
1	ET0	Enable Timer 0 interrupt.		
0	EX0	Enable external interrupt 0.		

Slave Address

Bit: 7 6 5 4 3 2 1 0 SADDR.7 SADDR.6 SADDR.5 SADDR.4 SADDR.3 SADDR.2 SADDR.1 SADDR.0

Mnemonic: SADDR Address: A9h

SADDR

The SADDR should be programmed to the given or broadcast address for serial port to which the slave processor is designated.

ISP Address Low Byte

Bit: 7 6 5 4 3 2 1 0 A7 A6 A5 A4 A3 A2 A1 A0

Mnemonic: SFRAL Address: ACh

Low byte destination address for In System Programming operations.

ISP Address High Byte

Bit: 7 6 5 4 3 2 1 0 A15 A14 A13 A12 A11 A10 A9 A8

Mnemonic: SFRAH Address: ADh

Low byte destination address for In System Programming operations. (SFRAH, SFRAL) represents the address of the ROM byte that will be erased, programmed or read.

ISP Data Buffer

Bit: 6 5 4 3 2 0 1 D7 D1 D6 D5 D4 D3 D2 D0

Mnemonic: SFRFD Address: AEh

In ISP mode, read/write a specific byte ROM content must go through SFRFD register.

ISP Operation Modes

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 WFWIN
 NOE
 NCE
 CTRL3
 CTRL2
 CTRL1
 CTRL0

Mnemonic: SFRCN Address: AFh

WFWIN On-chip FLASH EPROM bank select for in-system programming.

0= AP FLASH EPROM bank is selected as destination for re-programming.1= LD FLASH EPROM bank is selected as destination for re-programming.

NOE Flash EPROM output enable.

NCE Flash EPROM chip enable.

CTRL[3:0] The Flash Control Signals.

ISP MODE	BANK	WFWIN	NOE	NCE	CTRL[3:0]	SFRAH, SFRAL	SFRFD
Erase 4KB LD Flash	0	1	1	0	0010	X	Х
Erase 32K AP Flash	0	0	1	0	0010	X	Х
Program 4KB LD Flash	0	1	1	0	0001	Address in	Data in
Program 32KB AP Flash	0	0	1	0	0001	Address in	Data in
Read 4KB LD Flash	0	1	0	0	0000	Address in	Data out
Read 32KB AP Flash	0	0	0	0	0000	Address in	Data out

PORT 3

Bit: 7 6 5 3 2 1 0 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0

Mnemonic: P3 Address: B0h

P3.7-0: General-purpose I/O port. Each pin also has an alternative input or output function, which is described below.

BIT	NAME	FUNCTION			
7	P3.7	RD: strobe for reading from external RAM			
6	P3.6	WR: strobe for writing to external RAM			
5	P3.5	T1: Timer 1 external count input			
4	P3.4	T0: Timer 0 external count input			
3	P3.3	INT1: External interrupt 1			
2	P3.2	INT0 : External interrupt 0			
2 12	P3.1	TxD: Serial port 0 output			
0	P3.0	RxD: Serial port 0 input			

PORT 5

 Bit:
 7
 6
 5
 4
 3
 2
 1
 0

 P5.7
 P5.6
 P5.5
 P5.4
 P5.3
 P5.2
 P5.1
 P5.0

Mnemonic: P5 Address: B1h

P5.7-0 A bi-directional I/O port with inernal pull-ups. This port is not bit-addressable. The alternate functions of P5.0 to P5.3 are inputs of ADC4 to ADC7.