

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Nuvoton ExpressCard™ Power Interface Switch W83L351 YG/YCG

W83L351 YG/YCGData Sheet Revision History

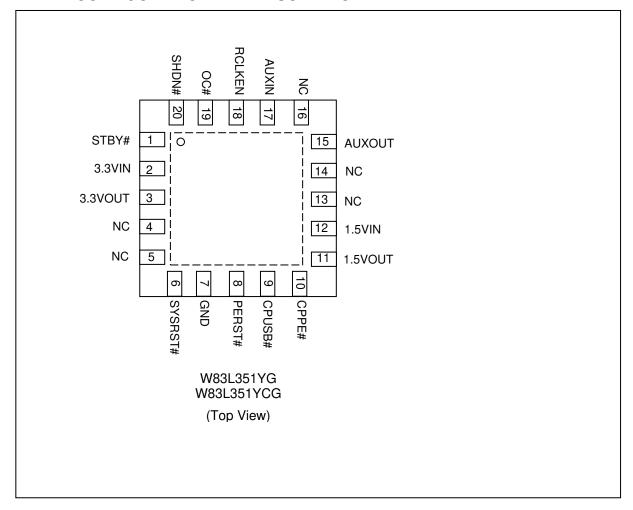
NO	PAGES	DATES	VERSION	VERSION ON WEB	MAIN CONTENTS
1.	All	Apr. /07	1.0	N.A	All versions before 1.0 are preliminary versions.
2.	28	July 5, 2007	1.1	YES	Update the ordering information and add the taping spec.
3.	All	May 22, 2008	1.2	YES	Remove the EOL part number W83L351G

Table of Contents-

1.	FEATURES	1
2.	PIN CONFIGURATION AND DESCRIPTION	2
3.	APPLICATION CIRCUIT	5
4.	INTERNAL BLOCK DIAGRAM	6
5.	ABSOLUTE MAXIMUM RATINGS	7
6.	RECOMMENDED OPERATING CONDITIONS	8
7.	ELECTRICAL CHARACTERISTICS	9
8.	SWITCHING CHARACTERISTICS	12
9.	FUNCTIONAL TRUTH TABLES	12
10.	TYPICAL OPERATING WAVEFORMS	15
11.	EXPRESSCARD TIMING DIAGRAMS	20
12.	PACKAGE DIMENSION	24
13.	ORDERING INFORMATION	27
14.	TOP MARKING SPECIFICATION	28
1.	FEATURES	1
2.	PIN CONFIGURATION AND DESCRIPTION	2
3.	APPLICATION CIRCUIT	5
4.	INTERNAL BLOCK DIAGRAM	6
5.	ABSOLUTE MAXIMUM RATINGS	7
6.	RECOMMENDED OPERATING CONDITIONS	8
7.	ELECTRICAL CHARACTERISTICS	9
8.	SWITCHING CHARACTERISTICS	12
9.	FUNCTIONAL TRUTH TABLES	12
10.	TYPICAL OPERATING WAVEFORMS	15
11.	EXPRESSCARD TIMING DIAGRAMS	20
12.	PACKAGE DIMENSION	24
13.	ORDERING INFORMATION	27
14.	TOP MARKING SPECIFICATION	28

W83L351 YG/YCG

nuvoTon


1. FEATURES

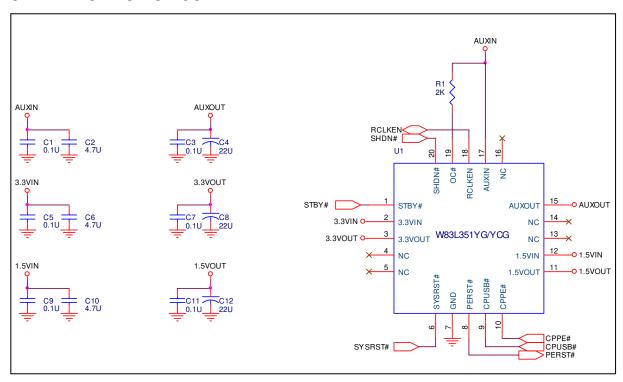
- Meets the ExpressCard™ Standard (ExpressCard|34 or ExpressCard|54)
- Compliant with the ExpressCard™ Compliance Checklists
- ExpressCard Compliance ID: EC100115 (W83L351YG/YCG)
- Fully Satisfies the ExpressCard™ Implementation Guidelines
- Supports System with WAKE Function
- TTL-Logic Compatible Inputs
- Short Circuit and Thermal Protection
- 0° to 70° Ambient Operating Temperature Range
- Available in a 20-pin QFN

Publication Date: May 22, 2008

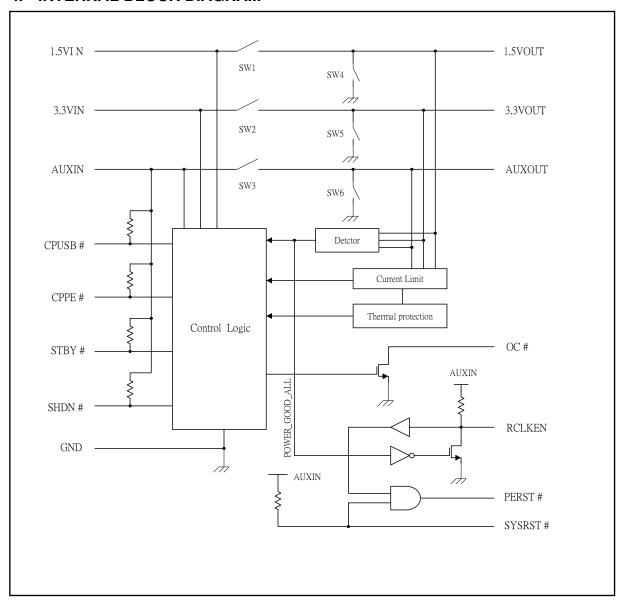
-1-

2. PIN CONFIGURATION AND DESCRIPTION

SYMBOL	PIN	I/O	FUNCTION
STINIBOL	YG/YCG	1/0	
SYSRST#	6	I ^(*)	System Reset input – active low, logic level signal. Internally pulled up to AUXIN. This input is driven by the host system and directly affects PERST#. Asserting SYSRST# (logic low) forces PERST# to assert. RCLKEN is not affected by the assertion of SYSRST#.
SHDN#	20	l ^(*)	Shutdown input – active low, logic level signal. Internally pulled up to AUXIN. When asserted (logic low), this input instructs the power switch to turn off all voltage outputs and the discharge FETs are activated.
STBY#	1	I ^(*)	Standby input – active low, logic level signal. Internally pulled up to AUXIN. When asserted (logic low) after the card is inserted, this input places the power switch in standby mode by turning off the 3.3V and 1.5V power switches and keeping the AUX switch on. If the signal is asserted prior to the card being present, STBY# places the power switch in OFF Mode by turning off the AUX, 3.3V, and 1.5V power switches.
			A logic level power good (with delay). When powered up, this output remains asserted (logic level low) until all power rails are within the tolerance. Once all power rails are within the tolerance and RCLKEN has been released (logic high), PERST# is deasserted (logic high) after a time delay, as shown in the parametric table. When powered down, this output is asserted whenever any of the power rails drops below their voltage tolerance.
			The PERST# signal is an output from the host system and an input to the ExpressCard module. This signal is only used by PCI Express-based modules and its function is to place the ExpressCard module in a reset state.
PERST#	8	0	During power up, power down, or whenever power to the ExpressCard module is not stable or not within voltage tolerance limits, the ExpressCard standard requires that PERST# be asserted. As a result, this signal also serves as a power-good indicator to the ExpressCard module, and the relationship between the power rails and PERST# are explicitly defined in the ExpressCard standard.
			The host can also place the ExpressCard module in a reset state by asserting a system reset SYSRST#. This system reset generates a PERST# signal to the ExpressCard module without disrupting the voltage rails. This is normally called a warm reset. However, in a cold start situation, the system reset can also be used to prolong the assertion time of PERST#.
CPUSB#	9	I ^(*)	Card Present input for USB cards. Internally pulled up to AUXIN. A logic low level on this input indicates that the card present supports the USB functions. When a card is inserted, CPUSB# is physically connected to ground if the card supports USB functions.


-3-

Continued


	PIN		FUNCTION				
SYMBOL	YG/YCG	I/O	FUNCTION				
CPPE#	10	J ^(*)	Card Present input for PCI Express cards. Internally pulled up to AUXIN. A logic low level on this input indicates that the card present supports the PCI Express functions. When a card is inserted, CPPE# is physically connected to ground if the card supports PCI Express functions.				
RCLKEN	18	I ^(*) /O	Reference Clock Enable signal. As an output, it is a logic level power good to the host (no delay – open drain). As an input, if the signal is kept inactive (low) by the host, PERST# will be prevented from being de-asserted. Internally pulled up to AUXIN. This pin serves both as an input and an output. When powered up, a discharge FET keeps this signal at a low state as long as any of the output power rails is out of their tolerance range. Once all output power rails are within the tolerance, the switch releases RCLKEN, allowing it to transit to a high state (internally pulled up to AUXIN). The transition of RCLKEN from a low to a high state starts an				
			internal timer for the purpose of de-asserting PERST#. As an input, RCLKEN can be kept low to delay the start of the PERST# internal timer. Because RCLKEN is internally connected to a discharge FET, this pin can only be driven low and should never be driven high as a logic input. When an external circuit drives this pin low, RCLKEN becomes an input; otherwise, this pin is an output.				
OC#	19	OD	Over current status output (open drain). This pin is an open-drain output. When any of the three power switches (AUX, 3.3V, and 1.5V) is in an over current condition, OC# is asserted (logic low) by an internal discharge FET with a deglitch delay. Otherwise, the discharge FET is open, and the pin can be pulled up to a power supply through an external resistor.				
3.3VIN	2	I	Primary voltage source, 3.3V input for 3.3VOUT				
1.5VIN	12	I	Secondary voltage source, 1.5V input for 1.5VOUT				
AUXIN	17	I	Auxiliary voltage source, AUX input for AUXOUT and chip power.				
3.3VOUT	3	0	Switched output that delivers 0V, 3.3V or high impedance to the card.				
1.5VOUT	11	0	Switched output that delivers 0V, 1.5V or high impedance to the card.				
AUXOUT	15	0	Switched output that delivers 0V, AUX or high impedance to the card.				
GND	7		Ground				
NC	4, 5, 13, 14, 16		No connection				

Notice: (1) Be aware that no input pins can be driven HIGH before the Auxiliary voltage is VALID.

3. APPLICATION CIRCUIT

4. INTERNAL BLOCK DIAGRAM

5. ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNIT	
	V _{I(3.3VIN)}	-0.3 to 6	V	
Input Voltage	V _{I(1.5VIN)}	-0.3 to 6	V	
	$V_{I(AUXIN)}$	-0.3 to 6	V	
Logic Input/Output Voltage		-0.3 to 6	V	
	V _{O(3.3VOUT)}	-0.3 to 6	V	
Output Voltage	V _{O(1.5VOUT)}	-0.3 to 6	V	
	$V_{O(AUXOUT)}$	-0.3 to 6	V	
	I _{O(3.3OUT)}	Internally limited		
Output Current	I _{O(1.5OUT)}	Internally	limited	
	I _{O(AUXOUT)}	Internally	limited	
Operating Temperature Range	T _{opt}	0 to 70	°C	
	Human Body Mode	±2	kV	
Electrostatic discharge protection	Machine Mode	±200	V	
	Latch-Up	±100	mA	

6. RECOMMENDED OPERATING CONDITIONS

ITEM			MIN	MAX	UNIT
Input Voltage	V _{I(3.3VIN)}	3.3VIN is only required for its respective functions	3	3.6	
	V _{I(1.5VIN)}	1.5VIN is only required for its respective functions	1.35	1.65	V
	$V_{I(AUXIN)}$	AUXIN is required for all circuit operations	3	3.6	
	I _{O(3.3VOUT)}		0	1.3	Α
Continuous output current	I _{O(1.5VOUT)}	TJ=120°C		650	mA
	I _{O(AUXOUT)}		0	275	mA

7. ELECTRICAL CHARACTERISTICS

 $T_{A} = 25^{\circ}\text{C}, \ V_{I \ (3.3\text{VIN})} = V_{I \ (AUXIN)} = 3.3 \ V, \ V_{I \ (1.5\text{VIN})} = 1.5 \ V, \ V_{I \ (SHDN\#)}, \ V_{I \ (STBY\#)} = 3.3 \ V, \ V_{I \ (CPPE\#)} = 0 \ V, \ V_{I \ (SYSRST)} = 3.3 \ V, \ OC\# \ and \ RCLKEN \ and \ PERST\# \ are open, \ all \ voltage \ outputs \ unloaded \ (unless \ otherwise \ noted)$

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	3.3VIN to 3.3VOUT with		TA = 25°C, I = 1305 mA each		90			
Power	two switches	on for dual	$TA = 70^{\circ}C, I = 1305 \text{ mA}$ each			105		
switch resistance	1.5VIN to 1.5		TA = 25°C, I = 660 mA each		90		mΩ	
10010101100	two switches	on for dual	TA = 70°C, I = 660 mA each			110		
	AUXIN to AU		TA = 25°C, I = 285 mA each		110			
	two switches		TA = 70°C, I = 285 mA each			126		
I _{OS} Short –	I _{OS(3.3VOUT)} (st value)	eady-state		1.3 5	1.7	2.5	Α	
circuit output	I _{OS(1.5VOUT)} (st value)	eady-state	Output powered into a short	0.6 7	1.1	1.3	Α	
current	I _{OS(AUXOUT)} (sto	eady-state		275	400	600	mA	
Thermal	Trip point, T _J		Rising temperature, not in over current condition		155		00	
Shutdown			Over current condition		130		°C	
	Hysteresis				10			
	Normal operation	I _{I(AUXIN)}	Outputs are unloaded		140	210		
		I _{I(3.3VIN)}	(include CPPE# and CPUSB# logic pull-up		10. 5	15	uA	
		I _{I(1.5VIN)}	currents)		2.2	10		
		I _{I(AUXIN)}	CPUSB# = CPPE# = 0 V		170	270		
	Shutdown	I _{I(3.3VIN)}	SHDN# = 0 V (discharge FETs are on) (include		6	10		
I _I Total input quiescent	mode	I _{I(1.5VIN)}	CPPE# and CPUSB# logic pull-up currents and SHDN# pull-up current)		2.2	10	uA	
current (Note: 1)		I _{I(AUXIN)}	CPUSB# = CPPE# = 0 V		170	270		
(Note. 1)	Standby	I _{I(3.3VIN)}	STBY# = 0 V (include CPPE# and CPUSB# logic		6	10	uA	
	mode (1)	I _{I(1.5VIN)}	pull-up currents and STBY# pull-up current)		2.2	10		
		I _{I(AUXIN)}	CPUSB# = CPPE# = 0 V		160	210	uA	
	Standby mode (2)	I _{I(3.3VIN)}	3.3VIN = 0 V (include CPPE# and CPUSB# logic		0	0.1		
		I _{I(1.5VIN)}	pull-up currents)		2.2	10		

Continued

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	G. "	I _{I(AUXIN)}	CPUSB# = CPPE# = 0 V		160	210		
	Standby mode (3)	I _{I(3.3VIN)}	1.5VIN = 0 V (include CPPE# and CPUSB# logic		6	10	uA	
	(-)	I _{I(1.5VIN)}	pull-up currents)		0	0.1		
l	I _{I(AU}	XIN)	SHDN# = 3.3 V, CPUSB# =		22	50		
I _{lkg(FWD)} Forward	I _{I(3.3}	VIN)	CPPE# = 3.3 V (no card present, discharge FETs are		0	50		
leakage current	I _{I(1.5}	VIN)	on);current measured at input pins, includes RCLKEN pull- up current		0	50	uA	
LOGIC SECT	TON (SYSRST	, SHDN#, ST	BY#, PERST#, RCLKEN , OC#	, CPUS	SB#, C	PPE#)	•	
			SYSRST# = 3.6 V, sinking		0			
	I _(SYSRS#)	Input	SYSRST# = 0 V, sourcing	10	17. 5	30	uA	
			SHDN# = 3.6 V, sinking		0			
	I _(SHDN#)	Input	SHDN# = 0 V, sourcing	10	17. 5	30	uA	
Logic input supply	I _(STBY#)		STBY# = 3.6 V, sinking		0			
current		Input	STBY# = 0 V, sourcing	10	17. 5	30	uA	
	I _(RCLKEN)	Input	RCLKEN = 0 V, sourcing	10	18	30	uA	
	I _(CPUSB#) or I _(CPPE#)	I _(CPUSB#) or		CPUSB# or CPPE# = 0 V, sinking		0		uA
		inputs	CPUSB# or CPPE# = 3.6 V, sourcing	10	17. 5	30	uA	
Logic input	High	level		2			V	
voltage	Low	evel				0.8	V	
RCLKEN ou voltage	tput low	Output	IO(RCLKEN) = 60 μA			0.4	V	
	sertion thresho		3.3VOUT falling	2.7		3		
voltage (PERST# asserted when any output voltage falls below the threshold)		AUXOUT falling	2.7		3	V		
		1.5VOUT falling	1.2		1.5			
PERST# assertion delay from output voltage			3.3VOUT, AUXOUT, 1.5VOUT falling			500	ns	
PERST# c		delay from	3.3VOUT, AUXOUT, or 1.5VOUT rising within tolerance	1	20		ms	

Continued

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PERST# assertion delay from SYSRST#	Max time from SYSRST asserted		25	500	ns
t _{W(PERST#)} PERST# minimum pulse width	3.3VOUT, AUXOUT, or 1.5VOUT falling out of tolerance or triggered by SYSRST#	100	340		us
PERST# output low voltage	5004			0.4	V
PERST# output high voltage	$I_{O(PERST\#)} = 500 \mu A$	2.4			V
OC# output low voltage	I _{O(OC#)} = 2 mA			0.4	V
OC# deglitch	Falling into or out of an over current condition		20		ms
UNDERVOLTAGE LOCKOUT (UVLO)					
3.3VIN UVLO	3.3VIN level, below which 3.3VIN and 1.5VIN switches are off	2.6		2.9	
1.5VIN UVLO	1.5VIN level, below which 3.3VIN and 1.5VIN switches are off	1.0		1.25	V
AUXIN UVLO	AUXIN level, below which all switches are off	2.6		2.9	
UVLO hysteresis			100		mV

Note 1: In the Shutdown mode or the Standby mode (1), the AUXIN quiescent current includes a normal operation current, SHDN# or STBY# internal pull-up current and RCLKEN internal pull-up current. In the Standby modes (2) & (3), the AUXIN quiescent current includes a normal operation current and a RCLKEN internal-up current.

8. SWITCHING CHARACTERISTICS

 $T_{A} = 25^{\circ}\text{C}, \ V_{I \ (3.3\text{VIN})} = V_{I \ (AUXIN)} = 3.3 \ V, \ V_{I \ (1.5\text{VIN})} = 1.5 \ V, \ V_{I \ (SHDN\#)}, \ V_{I \ (STBY\#)} = 3.3 \ V, \ V_{I \ (CPPE\#)} = 0 \ V, \ V_{I \ (SYSRST)} = 3.3 \ V, \ OC\# \ and \ RCLKEN \ and \ PERST\# \ are open, \ all \ voltage \ outputs \ unloaded \ (unless \ otherwise \ noted)$

PARAI	METER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
	3.3VIN to 3.3VOUT	C _{L(3.3VOUT)} =0.1uF, I _{O(3.3VOUT})=0A	0.1		6		
	AUXIN to AUXOUT	$C_{L(AUXVOUT)}=0.1uF$, $I_{O(AUXOUT)}=0A$	0.1		6		
	1.5VIN to 1.5VOUT	C _{L(1.5VOUT)} =0.1uF, I _{O(1.5VOUT)} =0A	0.1		6		
t _r	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}=100uF, R_L=V_{I(3.3VIN)}/1A$	0.1		6	ms	
Output rise times	AUXIN to AUXOUT	$C_{L(AUXVOUT)}$ =100uF, R _L =V _{I(AUXININ)} /0.250A	0.1		6		
	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)}$ =100uF, R _L =V _{I(1.5VIN)} /0.500A	0.1		6		
t _f	3.3VIN to 3.3VOUT	C _{L(3.3VOUT)} =0.1uF, I _{O(3.3VOUT})=0A	10		150		
Output fall times	AUXIN to AUXOUT	$C_{L(AUXVOUT)}=0.1uF$, $I_{O(AUXOUT)}=0A$	10		150	us	
when card	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)}=0.1uF, I_{O(1.5VOUT)}=0A$	10		150		
removed (both CPUSB# and	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}$ =20uF, $I_{O(3.3VOUT)}$ =0A	5		30		
CPPE# de-	AUXIN to AUXOUT	$C_{L(AUXVOUT)}=20uF$, $I_{O(AUXOUT)}=0A$	5		30	ms	
asserted)	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)}=20uF, I_{O(1.5VOUT)}=0A$	5		30		
	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}=0.1uF, I_{O(3.3VOUT)}=0A$	10		150		
	AUXIN to AUXOUT	C _{L(AUXVOUT)} =0.1uF, I _{O(AUXOUT)} =0A	10		150	us	
t _f Output fall times	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)}=0.1uF, I_{O(1.5VOUT)}=0A$	10		150		
when SHDN#	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}=100uF, R_L=V_{I(3.3VIN)}/1A$	0.1		3		
asserted (card is present)	AUXIN to AUXOUT	$ \begin{array}{l} C_{L(AUXVOUT)}{=}100uF, \\ R_{L}{=}V_{I(AUXININ)}/0.250A \end{array} $	0.1		3	ms	
	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)}$ =100uF, R _L = $V_{I(1.5VIN)}$ /0.500A	0.1		3		
	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)}=0.1uF, I_{O(3.3VOUT)}=0A$	0.1		6		
	AUXIN to AUXOUT	$C_{L(AUXVOUT)}=0.1uF$, $I_{O(AUXOUT)}=0A$	0.1		6		
$T_{pd(on)}$	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)}=0.1uF, I_{O(1.5VOUT)}=0A$	0.1		6		
Turn on	3.3VIN to 3.3VOUT	$C_{L(3.3VOUT)} = 100uF, R_L = V_{I(3.3VIN)} / 1A$	0.1		6	ms	
propagation delay	AUXIN to AUXOUT	$\begin{array}{l} C_{L(AUXVOUT)}{=}100uF, \\ R_{L}{=}V_{I(AUXININ)}/0.250A \end{array}$	0.1		6		
	1.5VIN to 1.5VOUT	$C_{L(1.5VOUT)}$ =100uF, R _L = $V_{I(1.5VIN)}$ /0.500A	0.1		6		

9. FUNCTIONAL TRUTH TABLES

Truth Table for Voltage Outputs

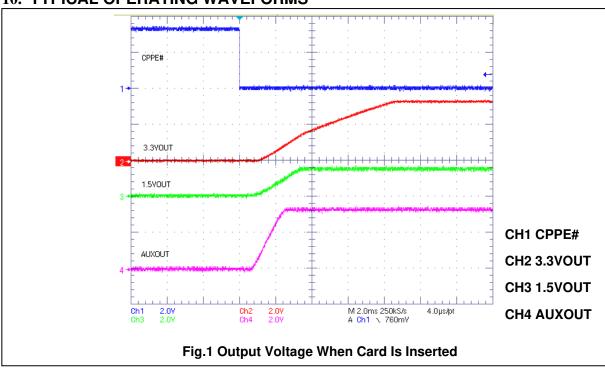
VOLT	TAGES INPUTS (1)		LO	LOGIC INPUTS		VOLTAGE OUTPUTS ⁽²⁾		MODE ⁽³⁾	
AUXIN	3.3VIN	1.5VIN	SHDN#	STBY#	CP# (4)	AUXOUT	3.3VOUT	1.5VOUT	WODL

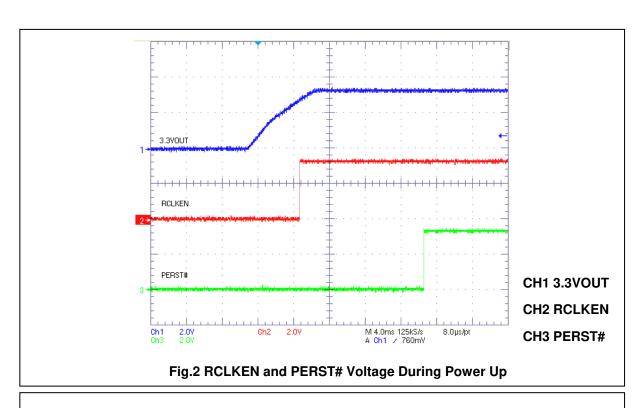
Off	Х	Х	Χ	Х	Χ	Off	Off	Off	Off
On	Off	Off	1	1	Х	Off	Off	Off	Off
On	On	On	1	0	0	Off	Off	Off	Off ⁽⁵⁾
On	On	On	1	0	Х	Off	Off	Off	Off ⁽⁶⁾
On	Х	Х	0	Х	Х	GND	GND	GND	Shutdown
On	Х	Х	1	Х	1	GND	GND	GND	No Card
On	On	On	1	0	0	On	Off	Off	Standby
On	On → Off	On → Off	1	1	0	On	Off	Off	Standby ⁽⁷⁾
On	On	On	1	1	0	On	On	On	Card Inserted

- (1) For input voltages, *On* means the respective input voltage is higher than its turn on threshold voltage; otherwise, the voltage is *Off* (for AUX input, *Off* means the voltage is close to zero volt).
- (2) For output voltages, *On* means the respective power switch is turned on so the input voltage is connected to the output; *Off* means the power switch and its output discharge FET are both off; *Gnd* means the power switch is off but the output discharge FET is on so the voltage on the output is pulled down to 0 V.
- (3) *Mode* assigns each set of input conditions and respective output voltage results to a different name. These modes are referred to as input conditions in the following *Truth Table for Logic Outputs*.
- (4) CP# = CPUSB# and CPPE# equal to 1 when both CPUSB# and CPPE# signals are logic high, or equal to 0 when either CPUSB# or CPPE# is low.
- (5) STBY# is asserted (logic low) prior to the card being present.
- (6) STBY# is asserted (logic low) prior to the voltage inputs being present.
- (7) The card is inserted prior to the removal of the Primary or Secondary power (either 3.3VIN or 1.5VIN or both) at the input of the ExpressCard power switch, then only the primary and secondary power (both 3.3VOUT and 1.5VOUT) are removed and the auxiliary power is sent to the ExpressCard slot.

Truth Table for Logic Outputs

II	NPUT CONDITIONS	LOGIC OUTPUTS			
MODE	SYSRST#	RCLKEN (1)	PERST#	RCLKEN (2)	
Off			0	0	
Shutdown	X	X			
No Card	^	^			
Standby					
	0	Hi - Z	0	1	
Card Inserted	0	0	0	0	
Card inserted	1	Hi - Z	1	1	
	1	0	0	0	


⁽¹⁾ RCLKEN as a logic input in this column. RCLKEN is an I/O pin and it can be driven low externally, left open, or connected to high-impedance terminals, such as the gate of a MOSFET. It must not be driven high externally.


Publication Date: May 22, 2008

-14-

⁽²⁾ RCLKEN as a logic output in this column.

10. TYPICAL OPERATING WAVEFORMS

-15-

Publication Date: May 22, 2008

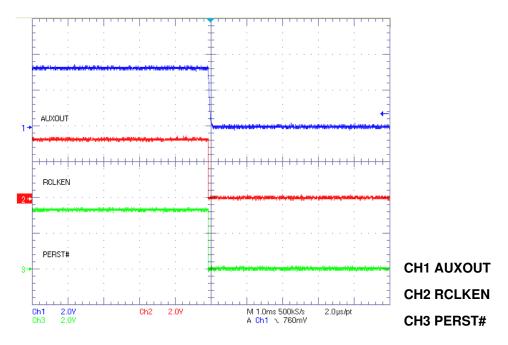
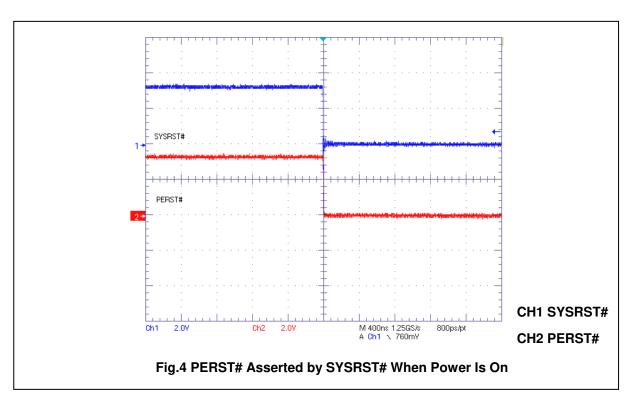



Fig.3 RCLKEN and PERST# Voltage During Power Down

Publication Date: May 22, 2008

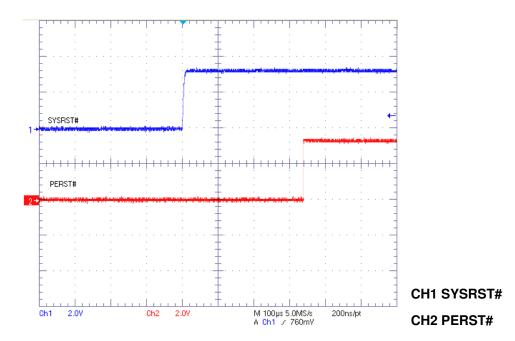
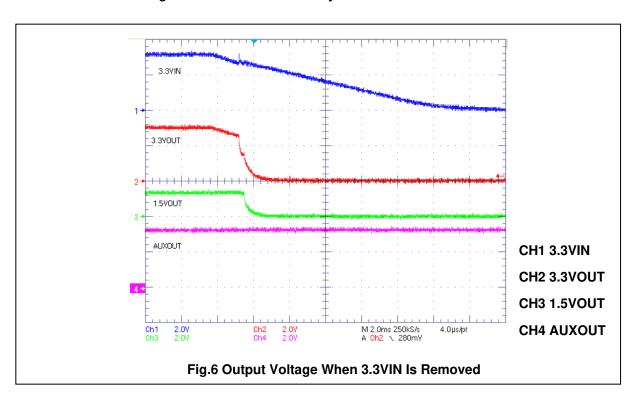



Fig.5 PERST# De-Asserted by SYSRST# When Power Is On

Publication Date: May 22, 2008

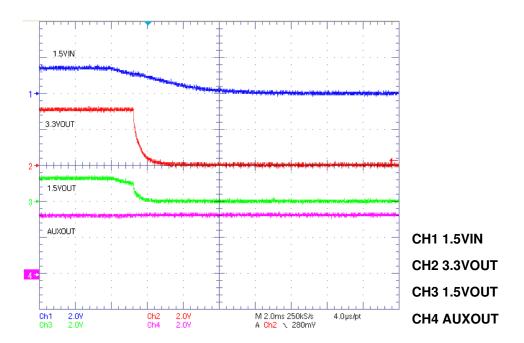
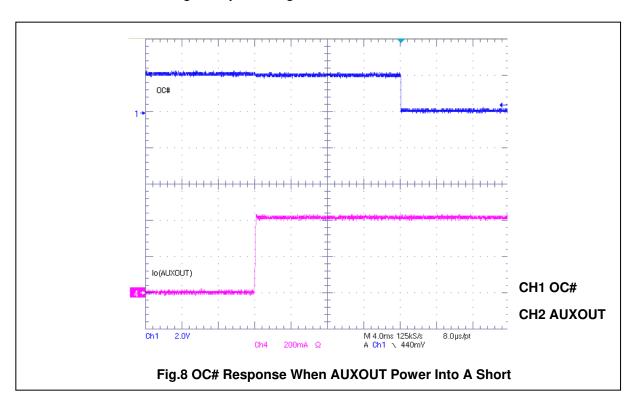
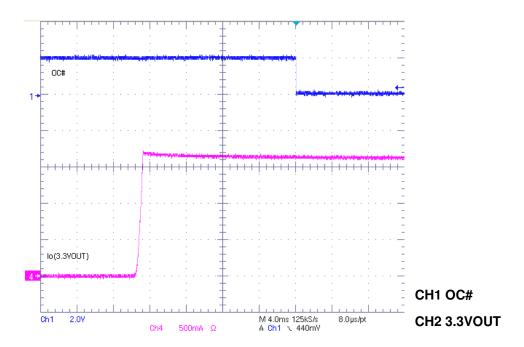
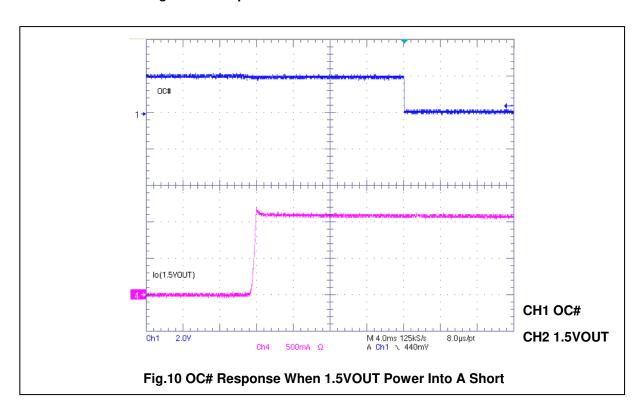
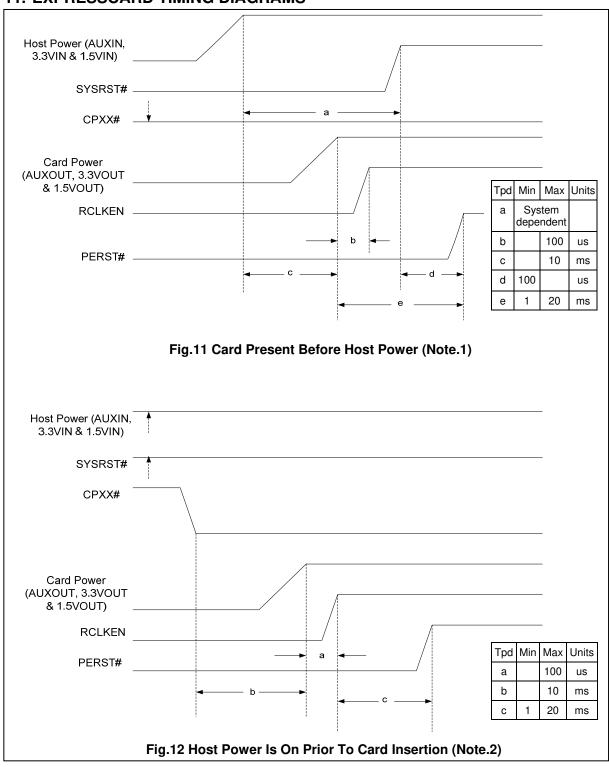
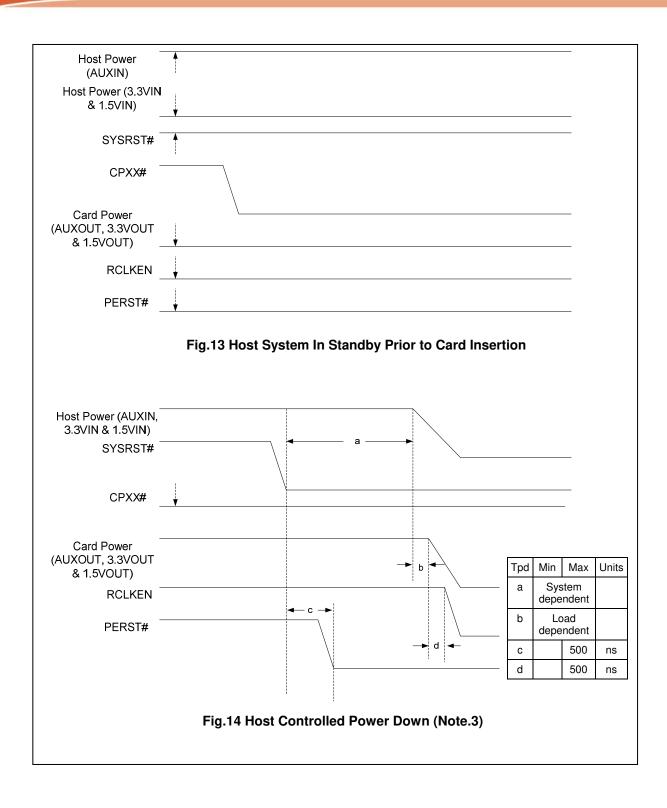



Fig.7 Output Voltage When 1.5VIN Is Removed

Publication Date: May 22, 2008

nuvoton


Fig.9 OC# Response When 3.3VOUT Power Into A Short

11. EXPRESSCARD TIMING DIAGRAMS

nuvoton

