mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Wireless LAN Module Evaluation Board

(For WYSACVLXY-XX)

WBSACVLXY-1

TAIYO YUDEN CO., LTD.

ATTENTION: This module has an API (Application Programming Interface) Specification that is under Japan export control. Depending on the customer's country and application (e.g. weapons), Taiyo Yuden may not be able to provide the API Specification to all customers. Please contact your local Taiyo Yuden sales office for additional information.

To contact your local sales office and for additional product information, please visit <u>www.ty-top.com</u>.

TAIYO YUDEN CO., LTD.

TABLE OF CONTENS

Introduction	4
Target module	4
Accessories	4
Recommended operating environment	4
Block diagram	5
Evaluation Board Layout	5
Software	7
Example of connection for evaluation	7

Rev. Records

22-Feb.-2016> Ver. 0.1 Released, Tentative version. 24-Mar.-2016> Ver. 1.0 Released, Official release.

1 piece

Introduction

The evaluation board is designed for customers to easily work with "WYSACVLXY-XX", *MCU embedded Wireless LAN* module, for functional evaluation purpose. This document describes the hardware configuration and the usage.

Target module

WYSACVLXY-XX

Accessories

Evaluation Board (WBSACVLXY-1)

Recommended operating environment

HOST PC:

1

CPU: 1000MHz or higher Interface: USB

DC Power Supply: (External power supply is not required.) Supplying Voltage = 4.5V to 5.5V Current limit should be set 1A.

Block diagram

WBSACVLXY-1 has serval connectors. J4 (USB mini B connector) is used for USB signal that is converted from UART by FT232RQ. The embedded application running on WYSACVLXY uses UART as a host interface usually. Solder bridge port (SB1-4) are used to switch UART interfaces (U9 or J2). J1 and J6 are jumper connector to switch power sources (from LDO or from J2/J3).

Evaluation Board Layout

WBSACVLXY-1

Pin description of evaluation board

J2 External Interface

Pin#	Name	Direction	Description
1	EX3V3_PWR	-	Power Supply 3.3V
2	GND	-	Ground
3	UART1_TXD	Output	UART1 TXD signal
4	UART1_RTSN	Output	UART1 RTS signal
			Hardware flow control is active by default with TAIYO
			YUDEN standard application
5	UART1_RXD	Input	UART1 RXD signal
6	UART1_CTSN	Input	UART1 CTS signal
			Hardware flow control is active by default with TAIYO
			YUDEN standard application
7	GPIO41	Input/Output	not used by TAIYO YUDEN standard application
8	SPI_CLK	Input/Output	not used by TAIYO YUDEN standard application
9	SPI_SEL	Input/Output	not used by TAIYO YUDEN standard application
10	SPI_TXD	Output	not used by TAIYO YUDEN standard application
11	SPI_RXD	Input	not used by TAIYO YUDEN standard application
12	SPI_RDY	Input/Output	not used by TAIYO YUDEN standard application

J3 External Interface

Pin#	Name	Direction	Description
1	EX3V3_PWR	-	Power Supply 3.3V
2	GND	-	Ground
3	UART0_TXD	Output	UART0 TXD signal
4	UART0_RXD	Input	UART0 RXD signal
5	I2C_SDA	Input/Output	not used by TAIYO YUDEN standard application
6	I2C_SCL	Input/Output	not used by TAIYO YUDEN standard application
7	WAKEUP0	Input	
8	WAKEUP1	Input	
9	GPIO41	Input/Output	not used by TAIYO YUDEN standard application
10	NC_CON5	-	not used by TAIYO YUDEN standard application
11	NC_CON4	-	not used by TAIYO YUDEN standard application
12	RESET	Input	Reset signal (Active Low)

Pin#	Name	Direction	Description
1	EX3V3_PWR	-	Power (to monitor power supply voltage)
2	TMS	Input	JTAG TMS signal
3	GND	-	Ground
4	TCK	Input	JTAG TCK signal
5	GND	-	Ground
6	TDO	Output	JTAG TDO signal
7	NC	-	
8	TDI	Input	JTAG TDI signal
9	NC	-	
10	TRSTN	Input	JTAG target reset signal

J5 Debug Interface (not used by TAIYO YUDEN standard application)

Software

 Device Drivers for FT232RQ: FT232RQ USB-UART converter is built in this board. FT232RQ is made by Future Technology Devices International Limited. Download USB driver from following URL. <u>http://www.ftdichip.com/</u>

Example of connection for evaluation

Case1. With PC

- Put jumper on J1 and J6 and connect USB cable
- Connect USB cable between PC and WBSACLVXY-1
- Run serial terminal software. Default baud rate of the module is 115.2kbps. Please configure baud rate of serial terminal software.

Case2. Using external interface (with other MCU)

- Cut the line between the land patterns of Solder Bridge SB1 SB4 in order to disconnect the UART line of the module from FT232RQ.
- Put jumper on J6 only and supply power source (3.3V) to J2/J3 pin#1.
- DO NOT put jumper on J1 in this case. If do that, MCU and WBSACVLXY-1 may be broken.

