: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Energy Management Multifunction indicator Type WM1 2-96

Product Description

3-phase multifunction power indicator with built-in programming key-pad. Particularly recommended for displaying the main electrical variables.

Housing for panel mounting, (front) protection degree IP65 as standard, and optional RS485 serial output.

- Accuracy ± 0.5 F.S. (current/voltage)
- Multifunction indicator
- Display of instantaneous variables: 3×3 digit
- Variable system and phase measurements: W, W $\mathbf{d m d}_{\text {d }}$, var, VA, VA ${ }_{\text {dmd }}$, PF, V, A, An, Hz
- $\mathbf{A}_{\text {max }}, \mathbf{W}_{\text {dmd max }}$ indication
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: $\mathbf{2 4 V}, 48 \mathrm{~V}, 115 \mathrm{~V}, \mathbf{2 3 0 V}, 50-60 \mathrm{~Hz} ; 18$ to 60 VDC
- Protection degree (front): IP65
- Front dimensions: $96 \times 96 \mathrm{~mm}$
- Optional RS422/485 serial output
- Alarms (visual only) VLN , An

Type Selection

Range codes

AV5: | $380 / 660 \mathrm{~V}_{\text {L-L }} / 5(6)$ AAC |
| :--- |
| VL-N: 185 V to 460 |

V
VL-L: 320 V to 800 V

AV6: $120 / 208 \mathrm{~V}_{\mathrm{L}-\mathrm{L}} / 5(6) \mathrm{AAC}$ VL-N: 45 V to 145 V VL-L: 78 V to 250 V
Phase current: 0.03A to 6A
Neutral current: 0.09 to 6A

System

3: 1-2-3-phase, unbalanced load, with or without neutral

Input specifications

Rated inputs Current Voltage	$\begin{aligned} & 3 \text { (shunt) } \\ & 4 \end{aligned}$
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{VT}=1 \mathrm{AV} 5$: 1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL
Current	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(0.5 \% \text { FS +1DGT) } \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm 7 \mathrm{DGT} \end{aligned}$
Neutral current	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(1.5 \% \mathrm{FS}+1 \mathrm{DGT}) \\ & 0.09 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm 7 \mathrm{DGT} \end{aligned}$
Phase-phase voltage	$\pm(1.5 \%$ FS +1 DGT)
Phase-neutral voltage	$\pm(0.5 \%$ FS + 1 DGT)
Active and Apparent power, Power factor	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(1 \% \text { FS }+1 \mathrm{DGT}) \text {; } \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm(1 \% \text { FS } \\ & +5 \mathrm{DGT}) \end{aligned}$
Reactive power	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(2 \% \text { FS }+1 \mathrm{DGT}) \text {; } \\ & 0.03 \mathrm{to} 0.25 \mathrm{~A}: \pm(2 \% \text { FS } \\ & \text { +5DGT) } \end{aligned}$
Frequency	$\pm 0.1 \% \mathrm{~Hz}$ (48 to 62 Hz)
Additional errors Humidity	s0.3\% FS, 60\% to 90\% RH
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Power supply

A: 24 VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
B: 48VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
C: 115VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
D: 230VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
3: $\quad 18$ to 60 VDC

Options

X: \quad None
S: RS485 output

How to order
WM12-96 AV5 3 D X
Model
Range code
System
Power supply
Option

CARLO GAVAZZI

RS485 Serial Output Specifications

RS422/RS485 (on request) Type		Data (bidirectional)	System and phase variables All configuration parameters 1 bit di start , 8 data bit, no parity, 1 stop bit 9600 bit/s
	Multidrop	Dynamic (reading only)	
	bidirectional (static and	Static (writing only)	
	dynamic variables)	Data format	
Connections	2 or 4 wires, max. distance		
	1200 m , termination directly on the instrument	Baud-rate	
Addresses	1 to 255 , key-pad selectable		
Protocol	MODBUS/JBUS		

Software functions

Password 1st level 2nd level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 999, all data are protected	Displaying 3-phase system with neutral	Up to 3 variables per page Page 1: VL1, V L2, V L3 Page 2: V L12, V L23, V L31 Page 3: AL1, AL2,AL3 Page 4: An Page 5: W L1, W L2, W L3 Page 6: PF L1, PF L2,
System selection	3-phase with neutral 3-phase without neutral 3-phase ARON 2-phase Single phase		PF L3 Page 7: $\operatorname{var} \mathrm{L} 1, \operatorname{var} \mathrm{~L} 2, \operatorname{var} \mathrm{~L} 3$ Page 8: VAL1, VAL2, VAL3 Page 9: VA $\Sigma, W \sum, \operatorname{var} \sum$ Page 10: VA dmd, W dmd, Hz
Transformer ratio CT VT	$\begin{aligned} & 1 \text { to } 999 \\ & 1.0 \text { to } 99.9 \\ & \hline \end{aligned}$		Page 11: Wdmd MAX Page 12: VL-L \sum, PF Σ Page 13: AMAX
Filter Operating range Filtering coefficient Filter action	0 to 99.9% of the input electrical scale 1 to 16 Measurements, alarms, serial output (fundamental variables: V, A, W and their derived ones).	Alarms	Programmable, for the VL \sum and An (neutral current). Note: the alarm is only visual, by means of LED on the front of the instrument.
		Reset	Independent alarm (VLE, An) max: A, Wdmd

Power Supply Specifications

Auxiliary power supply	230 VAC		24 VAC
	$-15+10 \%, 50-60 \mathrm{~Hz}$		$-15+10 \%, 50-60 \mathrm{~Hz}$
115 VAC		18 to 60 VDC	
	$-15+10 \%, 50-60 \mathrm{~Hz}$	Power consumption	AC: 4.5 VA
48 VAC			
	$-15+10 \%, 50-60 \mathrm{~Hz}$		DC: 4 W

General Specifications

Operating temperature	-5 to $+50^{\circ} \mathrm{C}\left(23\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ ($\mathrm{RH}<90 \%$ non condensing at $40^{\circ} \mathrm{C}$)	RS485.	500VAC/DC between measuring inputs and
Storage temperature	-30 to $+60^{\circ} \mathrm{C}\left(-22\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ ($\mathrm{RH}<90 \%$ non condensing at		4000VAC, 500 VDC between power supply and RS485
	$40^{\circ} \mathrm{C}$)	Dielectric strength	4000 VAC (for 1 min)
Installation category	Cat. III (IEC 60664, EN60664)	EMC	
Insulation (for 1 minute)	4000VAC, 500VDC between measuring inputs and power supply.	Emissions	EN50084-1 (class A) residential environment,

General Specifications (cont.)

Immunity	commerce and light industry EN61000-6-2 (class A) industrial environment.	Dimensions (WxHxD) Material	$96 \times 96 \times 63 \mathrm{~mm}$ ABS self-extinguishing: UL 94 V-0
Pulse voltage (1.2/50 $\mu \mathrm{s}$)	EN61000-4-5	Mounting	Panel
Safety standards	IEC60664, EN60664	Protection degree	Front: IP65 (standard),
Approvals	CE, cULus		NEMA4x, NEMA12 Connections: IP20
Connections 5(6) A Max cable cross sect. area	$\begin{aligned} & \text { Screw-type } \\ & 2.5 \mathrm{~mm}^{2} \end{aligned}$	Weight	Approx. 400 g (pack. incl.)
Housing			

Waveform of the signals that can be measured

Figure A
Sine wave, undistorted Fundamental content Harmonic content
$\mathrm{A}_{\mathrm{rms}}=$

Figure B
Sine wave, indented
Fundamental content Harmonic content Frequency spectrum: 3rd to 16th harmonic Additional error: <1\% FS

Figure C
Sine wave, distorted
Fundamental content
70...90\%

Harmonic content
10...30\%

Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5\% FS

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	V L1	V L2	V L3	
2	V L12	V L23	V L31	Decimal point blinking on the right of the display
3	AL1	A L2	A L3	
4	An	AL.n		AL.n if neutral current alarm is active
5	W L1	W L2	W L3	Decimal point blinking on the right of the display if generated power
6	PF L1	PF L2	PF L3	
7	VAR L1	VAR L2	VAR L3	Decimal point blinking on the right of the display if generated power
8	VA L1	VA L2	VA L3	
9	VA system	W system	VAR system	
10	VA dmd (system)	W dmd (system)	$\begin{gathered} \mathrm{Hz} \\ \text { (system) } \end{gathered}$	dmd = demand (integration time selectable from 1 to 30 minutes)
11		W dmd MAX		Maximum sys power demand
12	V LL system	AL.U	PF system	AL.U= is activated only if one of VLN is not within the set limits
13	A MAX			max. current among the three phases

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{I N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{1}^{2}}$

Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$V A r_{1}=\sqrt{\left(\text { VA }_{1}\right)^{2}-\left(W_{1}\right)^{2}}$
System variables
Equivalent 3-phase voltage
$V_{2}=\frac{V_{1}+V_{2}+V_{3}}{3} * \sqrt{3}$
3-phase reactive power
$V A r_{\mathbf{\Sigma}}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$

3-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
3-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$
3-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$

$\mathrm{F} 1=315 \mathrm{~mA}$

Wiring diagrams

NOTE: the current inputs can be connected to the lines ONLY by means of current transformers. The direct connection is not allowed.
ATTENTION: Only one ammeter input can be connected to earth, as shown in the electrical diagrams.

Front Panel Description

1. Key-pad

To program the configuration parameters and the display of the variables.

S

Key to enter programming and confirm selections;

Keys to:

- programme values;
- select functions;
- display measuring pages.

2. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

Dimensions and Panel Cut-out

