: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Energy Management Power Analyzer Type WM14-96 "Basic Version"

CARLO GAVAZZI

- Optional dual pulse output
- Alarms (visual only) V_{LN}, An
- Optional galvanically insulated measuring inputs

Product Description

3-phase power analyzer with built-in programming keypad. Particularly recommended for displaying the main electrical variables. Housing for panel mounting,
(front) protection degree IP65, and optional RS485 serial port or dual pulse output. Parameters programmable by means of CptBSoft.

Type Selection

Range codes
AV5: $380 / 660 \mathrm{~V}_{\mathrm{L}-\mathrm{L}} / 5(6) \mathrm{AAC}$
VL-N: 185 V to 460 V
VL-L: 320 V to 800 V
AV6: $120 / 208 \mathrm{~V}_{\mathrm{L}-} / 5(6) \mathrm{AAC}$
VL-N: 45 V to 145 V
VL-L: 78 V to 250 V
Phase current: 0.03 A to 6 A
Neutral current: 0.09 to 6A

System

3 : 1-2-3-phase, balanced/unbalanced load, with or without neutral

Input specifications

Rated inputs	
Current "X-S options"	3 (non insulated each other)
Current "SG-PG options"	3 (insulated each other)
Voltage	4
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} . \leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{VT}=1 \mathrm{AV} 5$:
	1150W-VA-var, FS:230VLN,
	400VLL; AV6: 285W-VA-var,
	FS:57VLN, 100VLL
Current	0.25 to $6 \mathrm{~A}: \pm(0.5 \% \mathrm{FS}+1 \mathrm{DGT})$
	$0.03 \mathrm{Ato} 0.25 \mathrm{~A} \cdot \pm(0.5 \%$ FS+7DGT)
Neutral current	0.25 to $6 \mathrm{~A}: \pm(1.5 \% \mathrm{FS}+1 \mathrm{DGT})$
	$0.09 \mathrm{Ato} 0.25 \mathrm{~A} \cdot \pm(0.5 \% \mathrm{FS}+7 \mathrm{DGT})$
Phase-phase voltage	$\pm(1.5 \%$ FS +1 DGT)
Phase-neutral voltage	$\pm(0.5 \%$ FS + 1 DGT)
Active and Apparent power,	0.25 to 6A: $\pm(1 \% \mathrm{FS}+1 \mathrm{DGT}$);
	0.03 A to 0.25A: $\pm(1 \% \mathrm{FS}$
	+5DGT)
Reactive power	0.25 to 6A: $\pm(2 \%$ FS +1DGT);

- Class 1 (active energy)
- Class 2 (reactive energy)
- Accuracy ± 0.5 F.S. (current/voltage)
- Power analyzer
- Display of instantaneous variables: 3×3 digit
- Display of energies: 8+1 digit
- System variables and phase measurements: $\mathbf{W}, \mathbf{W}_{\text {dmd }}$, var, VA, VA ${ }_{\text {dmd }}$, PF, V, A, An, A $_{\text {dmd }}$, Hz
- $\mathbf{A}_{\text {max }}, \mathbf{A}_{\text {dmd max }}, \mathbf{W}_{\text {dmd max }}$ indication
- Energy measurements: kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: $\mathbf{2 4 V}, 48 \mathrm{~V}, 115 \mathrm{~V}, 230 \mathrm{~V}, 50-60 \mathrm{~Hz}$; 18 to 60 VDC
- Protection degree (front): IP65
- Front dimensions: $96 \times 96 \mathrm{~mm}$
- Optional RS422/485 serial port

How to order WM14-96 AV5 3 D PG

Range code
System
upply
Power

How to order CptBSoft

CptBSoft (compatible only with S or SG options): software to program the working parameters of the power analyzer and to read the energy and the instantaneous variables.

Power supply

A: $\quad 24 \mathrm{VAC}$
$-15+10 \%, 50-60 \mathrm{~Hz}$
B: 48VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
C: 115VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
D: 230VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
3: 18 to 60VDC (not available in case of SG or PG options)

Options

X: None
S: \quad RS485 port
SG: RS485+galvanic insulated measurig inputs
PG: Dual pulse output + galvanically insulated measuring inputs.

CARLO GAVAZZI

Input specifications (cont.)

Display (cont.)	$1+3+3$ DGT (Max. indication: Read-out for hour counter 9999 9.99)
Measurements	Current, voltage, power, power factor, frequency, energy, TRMS measurement of distorted waves.
Coupling type	Direct <3, max 10A peak
Crest factor	

Input impedance	(X-S options)
$380 / 660 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}(\mathrm{AV} 5)$	$1 \mathrm{M} \Omega \pm 5 \%$
$120 / 20 \mathrm{~V}_{\mathrm{L}}(\mathrm{AV} 6)$	$453 \mathrm{~K} \Omega \pm 5 \%$
Current	$\leq 0.02 \Omega$
Input impedance	(PG-SG options)
$380 / 660 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}$ (AV5)	$1 \mathrm{M} \Omega \pm 1 \%$
$120 / 20 \mathrm{~V}_{\text {L-L }}(\mathrm{AV} 6)$	$1 \mathrm{M} \Omega \pm 1 \%$
Current	$\leq 0.02 \Omega$
Frequency	48 to 62 Hz
Overload protection	
\quadContinuos voltage/current For 500 ms voltge/current	$1.2 \mathrm{F.S}$.

RS485 Serial Port Specifications

\(\left.$$
\begin{array}{ll}\hline \begin{array}{l}\text { RS422/RS485 (on request) } \\
\text { Type }\end{array} & \begin{array}{l}\text { Multidrop } \\
\text { bidirectional (static and } \\
\text { dynamic variables) }\end{array}
$$

Connections \& 2 or 4 wires, max. distance

\& 1200 \mathrm{~m}, termination directly

on the instrument\end{array}\right\}\)| Addresses | 1 to 255, key-pad selectable |
| :--- | :--- |
| Protocol | MODBUS/JBUS |

Data (bidirectional)	
\quad Dynamic (reading only)	System, phase variables and energies
\quad Static (writing only)	All configuration parameters
Data format	bit di start , 8 data bit, no parity, 1 stop bit Baud-rate
9600 bit/s	

CptBSoft software: parameter programming and reading data

CptBSoft

Multi language software to
program the working
parameters of the power
analyzer and to read the
energies and the
instantaneous variables.
The program runs under
Windows $95 / 98 / 98 \mathrm{SE} / 2000 /$

Dual pulse output

Digital outputs (on request)
Pulse outputs
Number of outputs
Number of pulses

Output type

2 (one for kWh one for kvarh)	Pulse duration	Electrical life: $\min 2^{* 1} 0^{5}$ cycles Mechanial life: $5^{*} 10^{6}$ cycles $\geq 100 \mathrm{~ms}<120 \mathrm{~ms}$ (ON)
From 0.01 to 999 in		$\geq 100 \mathrm{~ms}$ (OFF)
compliance with the		According to EN622053-31
following formula:	Insulation	By means of relays,
[Psys max (kW or		$4000 \mathrm{~V}_{\text {RMS }}$ outputs to
kvar)*pulses (pulses/kWh		measuring inputs,
or kvarh)] <14400		$4000 \mathrm{~V}_{\text {RMS }}$ output to
Relay		supply input.
minaurent0.05A@250VAC30VDC		Insulation between the two
max current 5A@250VAC/30VDC		outputs: $1000 V_{\text {RMS }}$

CARLO GAVAZZ

Software functions

Power Supply Specifications

```
230VAC
-15+10%,50-60Hz
115VAC
-15+10%,50-60Hz
48VAC
-15+10%,50-60Hz
```

	24 VAC
	$-15+10 \%, 50-60 \mathrm{~Hz}$
	18 to 60 VDC
Power consumption	AC: 4.5 VA
	DC: 4 W

General Specifications

Operating temperature	0 to $+50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (RH $<90 \%$ non condensing)		mesuring inputs and RS485. 4000VAC, 500VDC between power supply and RS485
Storage	-30 to $+60^{\circ} \mathrm{C}\left(-22\right.$ to $\left.140^{\circ} \mathrm{F}\right)$		
temperature	(RH < 90\% non condensing)	Dielectric strength	4000 VAC (for 1 min)
Installation category	Cat. III (IEC 60664, EN60664)	EMC	
Insulation (for 1 minute)	4000VAC, 500VDC between mesuring inputs and power supply. $500 \mathrm{VAC} / \mathrm{DC}$ between	Emissions	EN50084-1 (class A) residential environment, commerce and light industry

CARLO GAVAZZI

General Specifications (cont.)

EMC (cont.) Immunity		Housing Dimensions (WxHxD) Material	$\begin{aligned} & 96 \times 96 \times 63 \mathrm{~mm} \\ & \text { ABS } \\ & \text { self-extinguishing: UL } 94 \text { V-0 } \end{aligned}$
	EN61000-6-2 (class A) industrial environment.		
Pulse voltage (1.2/50 $\mu \mathrm{s}$)	EN61000-4-5		
Safety standards	IEC60664, EN60664	Mounting	Panel
Approvals	CE, cULus	Protection degree	Front: IP65 (standard),
Connections 5(6) A	Screw-type $2.5 \mathrm{~mm}^{2}$		NEMA4x, NEMA12 Connections: IP20
		Weight	Approx. 400 g (pack. incl.)

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	V L1	V L2	V L3	
2	V L12	V L23	V L31 of the display	Decimal point blinking on the right
3	AL1	A L2	A L3	
4	A L1 dmd	A L2 dmd	A L3 dmd	dmd = demand (integration time selectable from 1 to 30 minutes)
5	An	AL.n		AL.n if neutral current alarm is active
6	W L1	W L2	W L3	Decimal point blinking on the right of the display if generated power
7	PF L1	PF L2	PF L3	
8	var L1	var L2	var L3	Decimal point blinking on the right of the display if generated power
9	VA L1	VA L2	VA L3	
10	VA system	W system	var system	
11	VA dmd (system)	W dmd (system)	$\begin{gathered} \mathrm{Hz} \\ \text { (system) } \end{gathered}$	dmd = demand (integration time selectable from 1 to 30 minutes)
12		W dmd MAX		Maximum sys power demand
13	Wh (MSD)	Wh	Wh (LSD)	The total indication is given in max 3 groups of 3 digits.
14	varh (MSD)	varh	varh (LSD)	The total indication is given in max 3 groups of 3 digits.
15	V LL system	AL.U	PF system	AL.U= is activated only if one of VLN is not within the set limits.
16	A MAX			max. current among the three phases
17	A dmd max			max. dmd current among the three phases
18	h			hour counter

MSD: most significant digit
LSD: least significant digit

1) Example of kWh visualization:

This example is showing 15933453.7 kWh
2) Example of kvarh visualization:

This example is showing 3553944.9 kvarh

Waveform of the signals that can be measured

Figure A
Sine wave, undistorted
Fundamental content Harmonic content
$\mathrm{A}_{\mathrm{rms}}=$

Figure B
Sine wave, indented
Fundamental content Harmonic content
Frequency spectrum: 3rd to 16th harmonic
Additional error: <1\% FS

Figure C
Sine wave, distorted
Fundamental content
70...90\%

Harmonic content
10...30\%

Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5\% FS

Accuracy

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current
 : this graph is only referred to instrument models with the "SG or PG" option.
: this graph is only referred to instrument models with the "X or S" option.

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{I N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{I N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{1} \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{1}^{2}}$

Instantaneous apparent power
$V_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
VAr $_{1}=\sqrt{\left(\text { VA }_{1}\right)^{2}-\left(W_{1}\right)^{2}}$
System variables
Equivalent 3-phase voltage
$V_{2}=\frac{V_{1}+V_{2}+V_{5}}{3} * \sqrt{3}$
3-phase reactive power
$V A r_{\Sigma}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$

3-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
3-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$
3-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$

Used calculation formulas (cont.)

	Energy metering
	Where:
	$\mathrm{i}=$ considered phase (L1, L2 or L3)
$k W_{h i}=\int \mathrm{P}_{i}(\mathrm{t}) \mathrm{dt} \cong \Delta t \sum^{n_{m}} \mathrm{P}_{\text {di }}$	$\mathrm{P}=$ active power
	Q = reactive power
$\left.k V_{a r h}=\int_{Q_{i}}^{t_{2}} Q_{i}\right) d t \Xi \Delta t \sum_{i}^{n_{3}} Q_{a_{i}}$	$\mathrm{t}_{1}, \mathrm{t}_{2}=$ starting and ending time points of consumption recording $\mathrm{n}=$ time unit
	$\Delta t=$ time interval between two successive power consumptions
	$\mathrm{n}_{1}, \mathrm{n}_{2}=$ starting and ending discrete time points of consumption recording

Wiring diagrams

$\mathrm{F} 1=315 \mathrm{~mA}$

NOTE: Only for "PG" and "SG" options: the current measuring inputs are galvanically insulated and therefore they can be connected to ground singly.
NOTE: For all models except for "PG" or "SG" the current inputs can be connected to the lines ONLY by means of current transformers. The direct connection is not allowed.
ATTENTION: only one ammeter input can be connected to earth, as shown in the electrical diagrams.

RS485 port connections

[a]	[b]	[c]	
GND (9-		\square GND	
110	T		
+		$\square^{T x+}$	
x-		TX-	
$7 \mathrm{~T}+$ (13)	TX+ ${ }^{13}$	RX	4-wire
TX- (14)	TX- ${ }^{14}$		connection

Fig. 7: a-Last instrument; b-1...n Instrument c-RS485/232 serial converter

Dual pulse output connections

Front Panel Description

1. Key-pad

To program the configuration parameters and the display of the variables.

S
Key to enter programming and confirm selections;

Keys to:

- programme values
- select functions;
- display measuring pages.

2. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables

Dimensions and Panel Cut-out

