

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Mono CODEC with Speaker Driver

DESCRIPTION

The WM8510 is a low power, high quality mono codec designed for Voice over Internet Protocol (VoIP) and Digital Telephones.

The device integrates support for one pseudo-differential and one single ended input (Handset Mic and Speaker Mic) and includes drivers for speakers or headset, and mono line output, making it ideal for Telephone designs. External component requirements are reduced as no separate microphone or earpiece amplifiers are required.

Advanced Sigma Delta Converters are used along with digital decimation and interpolation filters to give high quality audio at sample rates from 8 to 48kHz.

Additional digital filtering options are available in the ADC path, to cater for application filtering such as 'wind noise reduction', plus an advanced mixed signal ALC function with noise gate is provided.

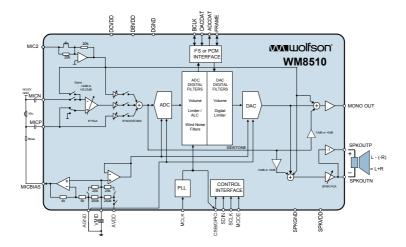
An on-chip PLL is provided to generate the required Master Clock from an external reference clock. The PLL clock can also be output if required elsewhere in the system.

The WM8510 operates at supply voltages from 2.5 to 3.6V, although the digital supplies can operate at voltages down to 1.71V to save power. The speaker and mono outputs use a separate supply of up to 5V which enables increased output power if required. Different sections of the chip can also be powered down under software control by way of the selectable two or three wire control interface.

WM8510 is supplied in a convenient 28-lead SSOP package, offering high levels of functionality in an easy to use package.

BLOCK DIAGRAM

FEATURES


- Mono Codec:
- Audio sample rates:8, 11.025, 16, 22.05, 24, 32, 44.1, 48kHz
- DAC SNR 93dB, THD -84dB ('A'-weighted @ 8 48kHz)
- ADC SNR 90dB, THD -80dB ('A'-weighted @ 8 48kHz)
- On-chip Headphone/Speaker Driver with 'cap-less' connect
 - 40mW output power into 16Ω / 3.3V SPKVDD
 - BTL speaker drive 0.8W into 8Ω / 5V SPKVDD
- Earpiece Line output
- Multiple analog inputs, plus analog bypass path (0 or -10dB)
- Mic Preamps:
- Two Microphone Interfaces
 - One pseudo-differential input with common mode rejection
 - One single ended input
 - Programmable preamp gain
 - Programmable ALC / Noise Gate in ADC path
- Low-noise bias supplied for microphone

Other Features

- Digital Playback Limiter
- Programmable ADC High Pass Filter (wind noise reduction)
- Programmable ADC Notch Filter
- On-chip PLL
 - Low power, low voltage
 - 2.5V to 3.6V (digital supplies: 1.71V to 3.6V)
 - power consumption <10mW all-on 48kHz mode
- 28 lead SSOP package

APPLICATIONS

- VoIP Telephones
- Digital Telephones
- Conference Speaker-phone
- Mobile Telephone Hands-free Kits
- General Purpose low power audio CODEC

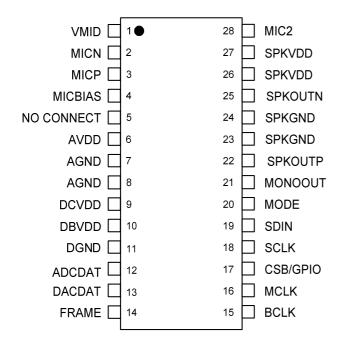


TABLE OF CONTENTS

DESCRIPTION	
BLOCK DIAGRAM	1
FEATURES	1
APPLICATIONS	1
PIN CONFIGURATION	3
ORDERING INFORMATION	3
PIN DESCRIPTION	
ABSOLUTE MAXIMUM RATINGS	
RECOMMENDED OPERATING CONDITIONS	
ELECTRICAL CHARACTERISTICS	
TERMINOLOGY	_
SIGNAL TIMING REQUIREMENTS	
SYSTEM CLOCK TIMING	
AUDIO INTERFACE TIMING – MASTER MODE	9
AUDIO INTERFACE TIMING – SLAVE MODE	
CONTROL INTERFACE TIMING – 3-WIRE MODE	
CONTROL INTERFACE TIMING – 2-WIRE MODE	
DEVICE DESCRIPTION	.13
INTRODUCTION	
INPUT SIGNAL PATH	
ANALOGUE TO DIGITAL CONVERTER (ADC)	. 19
INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC)	
OUTPUT SIGNAL PATH	
ANALOGUE OUTPUTS	
OUTPUT SWITCH	
DIGITAL AUDIO INTERFACES	
AUDIO SAMPLE RATES	
MASTER CLOCK AND PHASE LOCKED LOOP (PLL)	. 54
GENERAL PURPOSE INPUT/OUTPUT	
CONTROL INTERFACERESETTING THE CHIP	
POWER SUPPLIES	
POWER MANAGEMENT	
REGISTER MAP	
REGISTER BITS BY ADDRESS	
DIGITAL FILTER CHARACTERISTICS	
TERMINOLOGY	
DAC FILTER RESPONSES	
ADC FILTER RESPONSES	
DE-EMPHASIS FILTER RESPONSES	
HIGHPASS FILTER	
APPLICATIONS INFORMATION	
RECOMMENDED EXTERNAL COMPONENTS	
IMPORTANT NOTICE	
ADDRESS	

PIN CONFIGURATION

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PACKAGE BODY TEMPERATURE
WM8510GEDS/V	-40°C to +85°C	28-lead SSOP (Pb-free)	MSL3	260°C
WM8510GEDS/RV	-40°C to +85°C	28-lead SSOP (Pb-free, tape and reel)	MSL3	260°C

Note:

Reel Quantity = 2,000

WM8510 Production Data

PIN DESCRIPTION

PIN	NAME	TYPE	DESCRIPTION
1	VMID	Reference	Decoupling for midrail reference voltage
2	MICN	Analog Input	Microphone negative input
3	MICP	Analog Input	Microphone positive input (common mode)
4	MICBIAS	Analog Output	Microphone Bias
5	NC	NC	No Connect
6	AVDD	Supply	Analogue supply (feeds ADC, DAC and PLL)
7	AGND	Supply	Analogue ground (feeds ADC, DAC and PLL)
8	AGND	Supply	Analogue ground (feeds ADC, DAC and PLL)
9	DCVDD	Supply	Digital Core supply
10	DBVDD	Supply	Digital Buffer (Input/Output) supply
11	DGND	Supply	Digital ground
12	ADCDAT	Digital Output	ADC Digital Audio Data Output
13	DACDAT	Digital Input	DAC Digital Audio Data Input
14	FRAME	Digital Input/Output	DAC and ADC Sample Rate Clock or Frame synch
15	BCLK	Digital Input/Output	Digital Audio Port Clock
16	MCLK	Digital Input	Master Clock Input
17	CSB/GPIO	Digital Input/Output	3-Wire MPU Chip Select or General Purpose Input/Output pin.
18	SCLK	Digital Input	3-Wire MPU Clock Input / 2-Wire MPU Clock Input
19	SDIN	Digital Input/Output	3-Wire MPU Data Input / 2-Wire MPU Data Input/Output
20	MODE	Digital Input	Control Interface Mode Selection Pin.
21	MONOOUT	Analog Output	Mono Audio Output
22	SPKOUTP	Analog Output	Speaker Output Positive
23	SPKGND	Supply	Speaker ground (feeds speaker and mono output amps only)
24	SPKGND	Supply	Speaker ground (feeds speaker and mono output amps only)
25	SPKOUTN	Analog Output	Speaker Output Negative
26	SPKVDD	Supply	Speaker supply (feeds speaker and mono output amps only)
27	SPKVDD	Supply	Speaker supply (feeds speaker and mono output amps only)
28	MIC2	Analog Input	Second Analog Input

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
DBVDD, DCVDD, AVDD supply voltages	-0.3V	+3.63V
SPKVDD supply voltage	-0.3V	+7V
Voltage range digital inputs	DGND -0.3V	DVDD +0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD +0.3V
Operating temperature range, T _A	-40°C	+85°C
Storage temperature after soldering	-65°C	+150°C

Notes

- 1. Analogue and digital grounds must always be within 0.3V of each other.
- 2. All digital and analogue supplies are completely independent from each other.
- 3. When using the PLL, DCVDD should be $\geq 1.9V$

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply range (Core)	DCVDD		1.71		3.6	٧
Digital supply range (Buffer)	DBVDD		1.71		3.6	V
Analogue supplies range	AVDD		2.5		3.6	V
Speaker supply	SPKVDD		2.5		5.5	V
Ground	DGND,AGND, SPKGND			0		V

Notes

1. DCVDD ≤ DBVDD at all times.

ELECTRICAL CHARACTERISTICS

Test Conditions

DCVDD = 1.8V, AVDD = DBVDD = 3.3V, SPKVDD = 3.3V, $T_A = +25^{\circ}C$, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Microphone Inputs (MICN, MICF	P)	<u>. </u>				
Full-scale Input Signal Level (Note 1) – note this changes with AVDD	Vinfs	PGABOOST = 0dB INPPGAVOL = 0dB		1.0 0		Vrms dBV
Mic PGA equivalent input noise	At 35.25dB gain			150		uV
Input resistance	R _{MICIN}	Gain set to 35.25dB		1.6		kΩ
Input resistance	R _{MICIN}	Gain set to 0dB		47		kΩ
Input resistance	R _{MICIN}	Gain set to -12dB		75		kΩ
Input resistance	R _{MICIP}	MICP2INPPGA = 1		94		kΩ
Input Capacitance	C _{MICIN}			10		pF
Recommended coupling cap	C _{COUP}			220		pF
MIC Input Programmable Gain	Amplifier (PGA))				
Programmable Gain			-12		35.25	dB
Programmable Gain Step Size		Guaranteed monotonic		0.75		dB
Mute Attenuation				108		dB
Selectable Input Gain Boost (0/-	+20dB)				•	
Gain Boost			0		20	dB
Automatic Level Control (ALC)/I	imiter – ADC	only				
Target Record Level			-28.5		-6	dB
Programmable Gain			-12		35.25	dB
Programmable Gain Step Size		Guaranteed Monotonic		0.75		dB
Gain Hold Time (Note 2)	thold	MCLK=12.288MHz (Note 4)		5.33, 10.67, oubles with ea	-	ms
Gain Ramp-Up (Decay) Time (Note 3)	tpcy	ALCMODE=0 (ALC), MCLK=12.288MHz (Note 4)	,	6.6, 13.1, , oubles with ea		ms
		ALCMODE=1 (limiter), MCLK=12.288MHz (Note 4)	,	1.45, 2.91, oubles with ea	•	
Gain Ramp-Down (Attack) Time (Note 3)	t _{ATK}	ALCMODE=0 (ALC), MCLK=12.288MHz (Note 4)	•	1.66, 3.33, oubles with ea	-	ms
		ALCMODE=1 (limiter), MCLK=12.288MHz (Note 4)	•	0.36, 0.73, oubles with ea		
Analogue to Digital Converter (A	ADC)					
Signal to Noise Ratio (Note 5)	SNR	A-weighted, 0dB PGA gain	87	90		dB
Total Harmonic Distortion (Note 6)	THD	1dBFS input, 0dB PGA gain		-80	-65	dB

Test Conditions

DCVDD = 1.8V, AVDD = DBVDD = 3.3V, SPKVDD = 3.3V, $T_A = +25^{\circ}C$, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
MIC2 Analogue Input						
Full-scale Input Signal Level (0dB) – note this scales with AVDD	V _{INFS}			1.0 0		Vrms dBV
Input Resistance	R _{MIC2IN}	MIC2MODE=0		20		kΩ
Input Capacitance	C _{MIC2IN}			10		pF
Digital to Analogue Converter (I		output (all data measure	ed with 10kΩ	/ 50pF load)		
Signal to Noise Ratio (Note 5)	SNR	A-weighted	90	93		dB
Total Harmonic Distortion	THD	R _L = 10 kΩ		-84	-70	dB
(Note 6)		full-scale signal				
0dB Full Scale output voltage		MONOBOOST=0		AVDD/3.3		V_{RMS}
(Note 7)		MONOBOOST=1		1.5x (AVDD/3.3)		
Speaker Output PGA						
Programmable Gain			-57		6	dB
Programmable Gain Step Size		Guaranteed monotonic		1		dB
BTL Speaker Output (SPKOUTP	, SPKOUTN w	ith 8Ω bridge tied load)				
Output Power	Po	Output power	is very closely	correlated wit	h THD; see be	elow
Total Harmonic Distortion	THD	$P_{O} = 180 \text{mW}, R_{L} = 8\Omega,$		0.03		%
		SPKVDD=3.3V		-70		dB
		$P_0 = 400 \text{mW}, R_L = 8\Omega,$		5.0		%
		SPKVDD=3.3V		-26		dB
		P_O =360mW, R_L = 8Ω ,		0.02		%
		SPKVDD=5V		-75		dB
		$P_0 = 800 \text{mW}, R_L = 8\Omega,$		0.06		%
		SPKVDD=5V		-65		dB
Signal to Noise Ratio	SNR	SPKVDD=3.3V, $R_L = 8\Omega$		90		dB
		SPKVDD=5V,		90		dB
		$R_L = 8\Omega$				
Power Supply Rejection Ratio				50		dB
'Headphone' output (SPKOUTP	SPKOUTN wi	th resistive load to grou	ınd)			-
Signal to Noise Ratio	SNR			93		dB
Total Harmonic Distortion	THD	Po=20mW, R _L = 16Ω,		0.02		%
		SPKVDD=3.3V		-74		dB
		Po=20mW, R_L = 32Ω,		0.017		%
		SPKVDD=3.3V		- 75		dB
Microphone Bias		1		•		
Bias Voltage (MBVSEL=0)	V _{MICBIAS}			0.9*AVDD		V
Bias Voltage (MBVSEL=1)	V _{MICBIAS}			0.65*AVDD		V
Bias Current Source	I _{MICBIAS}				3	mA
Output Noise Voltage	Vn	1kHz to 20kHz		15		nV/√Hz
Digital Input / Output	L	1	II.	1		
Input HIGH Level	V _{IH}		0.7×DVDD			V
Input LOW Level	V _{IL}				0.3×DVDD	V
Output HIGH Level	V _{OH}	I _{OL} =1mA	0.9×DVDD			V
Output LOW Level	V _{OL}	I _{OH} -1mA			0.1xDVDD	V

WM8510 Production Data

TERMINOLOGY

1. MICN input only in single ended microphone configuration. Maximum input signal to MICP without distortion is -3dBV.

- 2. Hold Time is the length of time between a signal detected being too quiet and beginning to ramp up the gain. It does not apply to ramping down the gain when the signal is too loud, which happens without a delay.
- 3. Ramp-up and Ramp-Down times are defined as the time it takes the PGA to change its gain by 6dB.
- 4. All hold, ramp-up and ramp-down times scale proportionally with MCLK
- 5. Signal-to-noise ratio (dB) SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
- 6. THD (dB) THD is a ratio, of the rms values, of Noise Signal.
- 7. The maximum output voltage can be limited by the speaker power supply. If MONOBOOST=1 then SPKVDD should be 1.5xAVDD or higher to prevent clipping taking place in the output stage.

SIGNAL TIMING REQUIREMENTS

SYSTEM CLOCK TIMING

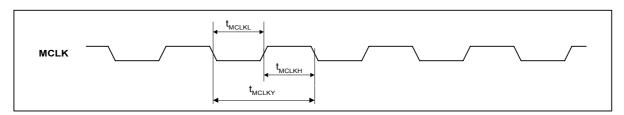


Figure 1 System Clock Timing Requirements

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T_A = +25°C, Slave Mode

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT		
System Clock Timing Information							
MCLK System clock cycle time	T _{MCLKY}	Tbd			ns		
MCLK duty cycle	T _{MCLKDS}	60:40		40:60			

AUDIO INTERFACE TIMING - MASTER MODE

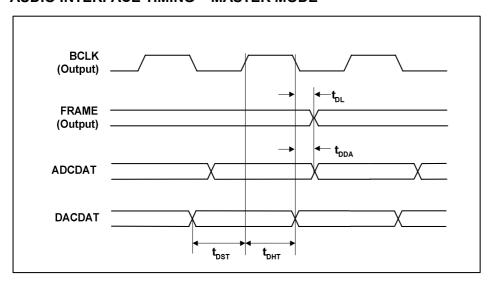


Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)

WM8510 Production Data

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T_A =+25°C, Master Mode, fs=48kHz, MCLK=256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
FRAME propagation delay from BCLK falling edge	t _{DL}			10	ns
ADCDAT propagation delay from BCLK falling edge	t _{DDA}			10	ns
DACDAT setup time to BCLK rising edge	t _{DST}	10			ns
DACDAT hold time from BCLK rising edge	t _{DHT}	10			ns

AUDIO INTERFACE TIMING - SLAVE MODE

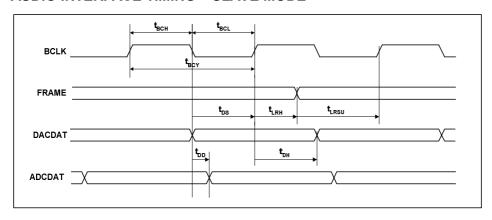


Figure 3 Digital Audio Data Timing - Slave Mode

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T_A =+25°C, Slave Mode, fs=48kHz, MCLK=256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information				•	
BCLK cycle time	t _{BCY}	50			ns
BCLK pulse width high	t _{BCH}	20			ns
BCLK pulse width low	t _{BCL}	20			ns
FRAME set-up time to BCLK rising edge	t _{LRSU}	10			ns
FRAME hold time from BCLK rising edge	t _{LRH}	10			ns
DACDAT hold time from BCLK rising edge	t _{DH}	10			ns
DACDAT set-up time to BCLK rising edge	t _{DS}	10			ns
ADCDAT propagation delay from BCLK falling edge	t _{DD}			20	ns

Note:

BCLK period should always be greater than or equal to MCLK period.

CONTROL INTERFACE TIMING - 3-WIRE MODE

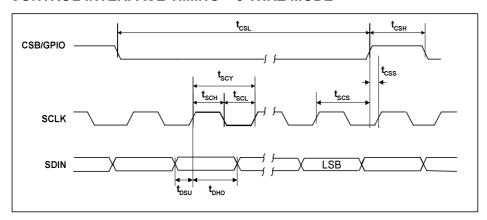


Figure 4 Control Interface Timing – 3-Wire Serial Control Mode

Test Conditions

DCVDD = 1.8V, DBVDD = AVDD = SPKVDD = 3.3V, DGND = AGND = SPKGND = 0V, $T_A = +25^{\circ}C$, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT			
Program Register Input Information								
SCLK rising edge to CSB rising edge	tscs	80			ns			
SCLK pulse cycle time	t _{SCY}	200			ns			
SCLK pulse width low	t _{SCL}	80			ns			
SCLK pulse width high	t _{sch}	80			ns			
SDIN to SCLK set-up time	t _{DSU}	40			ns			
SCLK to SDIN hold time	t _{DHO}	40			ns			
CSB pulse width low	t _{CSL}	40			ns			
CSB pulse width high	t _{CSH}	40			ns			
CSB rising to SCLK rising	t _{CSS}	40			ns			
Pulse width of spikes that will be suppressed	t _{ps}	0		5	ns			

WM8510 Production Data

CONTROL INTERFACE TIMING – 2-WIRE MODE

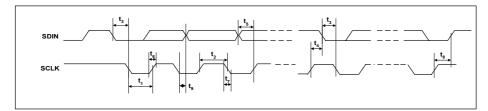


Figure 5 Control Interface Timing – 2-Wire Serial Control Mode

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T_A = +25°C, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT				
Program Register Input Information	Program Register Input Information								
SCLK Frequency		0		526	kHz				
SCLK Low Pulse-Width	t ₁	1.3			us				
SCLK High Pulse-Width	t ₂	600			ns				
Hold Time (Start Condition)	t ₃	600			ns				
Setup Time (Start Condition)	t ₄	600			ns				
Data Setup Time	t ₅	100			ns				
SDIN, SCLK Rise Time	t ₆			300	ns				
SDIN, SCLK Fall Time	t ₇			300	ns				
Setup Time (Stop Condition)	t ₈	600			ns				
Data Hold Time	t ₉			900	ns				
Pulse width of spikes that will be suppressed	t _{ps}	0		5	ns				

DEVICE DESCRIPTION

INTRODUCTION

The WM8510 is a low power audio codec combining a high quality mono audio DAC and ADC, with flexible line and microphone input and output processing. Applications for this device are anticipated to include VoIP telephones, digital telephones, conference speaker phones and mobile hands-free kits.

FEATURES

The chip offers great flexibility in use, and so can support many different modes of operation as follows:

MICROPHONE INPUTS

Two microphone inputs are provided, allowing for either a differential microphone input or a single ended microphone to be connected. These inputs have a user programmable gain range of -12dB to +35.25dB using internal resistors. After the input PGA stage comes a boost stage which can add a further 20dB of gain. A microphone bias is output from the chip which can be used to bias the microphones. The signal routing can be configured to allow manual adjustment of mic levels, or to allow the ALC loop to control the level of mic signal that is transmitted.

Total gain through the microphone paths of up to +55.25dB can be selected.

FLEXIBLE MIC2 INPUT

The flexible configuration of the mono input, MIC2, with integrated on-chip resistors allows several analogue signals to be summed into the single input if required. This can be used as a microphone, line input or an input for warning tones (beep) etc. The output from this circuit can be summed into the mono output and/or the speaker output paths, so allowing for mixing of audio with 'backing music' etc as required.

SIDETONE ATTENUATION

A bypass path allows analog signals to travel directly to the outputs without passing through the ADC and DAC. For side tone features in telephone handsets this analogue bypass can be attenuated.

PGA AND ALC OPERATION

A programmable gain amplifier is provided in the input path to the ADC. This may be used manually or in conjunction with a mixed analogue/digital automatic level control (ALC) which keeps the recording volume constant.

ADC

The mono ADC uses a multi-bit high-order oversampling architecture to deliver optimum performance with low power consumption. Various sample rates are supported, from the 8ks/s rate typically used in voice dictation, up to the 48ks/s rate used in high quality audio applications.

HI-FI DAC

The hi-fi DAC provides high quality audio playback suitable for all portable mono audio type applications.

DIGITAL FILTERING

Advanced Sigma Delta Converters are used along with digital decimation and interpolation filters to give high quality audio at sample rates from 8ks/s to 48ks/s.

Application specific digital filters are also available which help to reduce the effect of specific noise sources such as 'wind noise'. The filters include a programmable ADC high pass filter and a programmable ADC notch filter.

OUTPUT MIXING AND VOLUME ADJUST

Flexible mixing is provided on the outputs of the device; a mixer is provided for the speaker outputs, and an additional mono summer for the mono output. These mixers allow the output of the DAC, the output of the ADC volume control and the MIC2 input to be combined. The output volume can be adjusted using the integrated digital volume control and there is additional analogue gain adjustment capability on the speaker output.

AUDIO INTERFACES

The WM8510 has a standard audio interface, to support the transmission of audio data to and from the chip. This interface is a 4 wire standard audio interface which supports a number of audio data formats including I²S, DSP Mode, MSB-First, left justified and MSB-First, right justified, and can operate in master or slave modes.

CONTROL INTERFACES

To allow full software control over all its features, the WM8510 offers a choice of 2 or 3 wire MPU control interface. It is fully compatible and an ideal partner for a wide range of industry standard microprocessors, controllers and DSPs. The selection between 2-wire mode and 3-wire mode is determined by the state of the MODE pin. If MODE is high then 3-wire control mode is selected, if MODE is low then 2-wire control mode is selected.

In 2 wire mode, only slave operation is supported, and the address of the device is fixed as 0011010.

CLOCKING SCHEMES

WM8510 offers the normal audio DAC clocking scheme operation, where 256fs MCLK is provided to the DAC/ADC.

However, a PLL is also included which may be used to generate the internal master clock frequency in the event that this is not available from the system controller. This PLL uses an input clock, typically the 12MHz USB or ilink clock, to generate high quality audio clocks. If this PLL is not required for generation of these clocks, it can be reconfigured to generate alternative clocks which may then be output on the CSB/GPIO pin and used elsewhere in the system.

POWER CONTROL

The design of the WM8510 has given much attention to power consumption without compromising performance. It operates at low supply voltages, and includes the facility to power off any unused parts of the circuitry under software control, includes standby and power off modes.

INPUT SIGNAL PATH

The WM8510 has 3 flexible analogue inputs for two separate microphone inputs. These inputs can be used in a variety of ways. The input signal path before the ADC has a flexible PGA block which then feeds into a gain boost/mixer stage.

MICROPHONE INPUTS

The WM8510 can accommodate a variety of microphone configurations including single ended and pseudo-differential inputs. The inputs through the MICN, MICP and optionally MIC2 pins are amplified through the input PGA as shown in Figure 6.

A pseudo differential input is the preferential configuration where the positive terminal of the input PGA is connected to the MICP input pin by setting MICP2INPPGA=1. The microphone ground should then be connected to MICN (when MICN2INPPGA=1) or optionally to MIC2 (when MIC2_2INPPGA=1) input pins.

Alternatively a single ended microphone can be connected to the MICN input with MICN2INPPGA set to 1. The non-inverting terminal of the input PGA should be connected internally to VMID by setting MICP2INPPGA to 0.

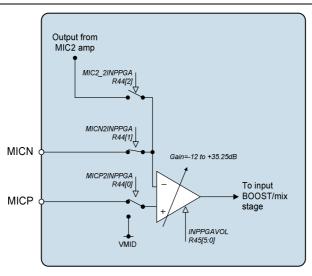


Figure 6 Microphone Input PGA Circuit (switch positions shown are for pseudo-differential mic input)

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R44 Input	0	MICP2INPPGA	1	Connect input PGA amplifier positive terminal to MICP or VMID.
Control				0 = input PGA amplifier positive terminal connected to VMID
				1 = input PGA amplifier positive terminal connected to MICP through variable resistor string
	1	MICN2INPPGA	1	Connect MICN to input PGA negative terminal.
				0=MICN not connected to input PGA
				1=MICN connected to input PGA amplifier negative terminal.
	2	MIC2_2INPPGA	0	Select MIC2 amplifier output as input PGA signal source.
				0=MIC2 not connected to input PGA
				1=MIC2 connected to input PGA amplifier negative terminal.

The input PGA is enabled by the INPGAEN register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	2	INPGAEN	0	Input microphone PGA enable
Power				0 = disabled
Management 2				1 = enabled

INPUT PGA VOLUME CONTROL

The input microphone PGA has a gain range from -12dB to +35.25dB in 0.75dB steps. The gain from the MICN input to the PGA output and from the MIC2 amplifier to the PGA output are always common and controlled by the register bits INPPGAVOL[5:0]. These register bits also affect the MICP pin when MICP2INPPGA=1.

When the Automatic Level Control (ALC) is enabled the input PGA gain is then controlled automatically and the INPPGAVOL bits should not be used.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R45	5:0	INPPGAVOL	010000	Input PGA volume
Input PGA				000000 = -12dB
volume control				000001 = -11.25db
				010000 = 0dB
				•
				111111 = +35.25dB
	6	INPPGAMUTE	0	Mute control for input PGA:
				0=Input PGA not muted, normal operation
				1=Input PGA muted (and disconnected from the following input BOOST stage).
	7	INPPGAZC	0	Input PGA zero cross enable:
				0=Update gain when gain register changes
				1=Update gain on 1 st zero cross after gain register write.
R32	8	ALCSEL	0	ALC function select:
ALC control				0=ALC off (PGA gain set by INPPGAVOL register bits)
				1=ALC on (ALC controls PGA gain)

Table 1 Input PGA Volume Control

MIC 2 INPUT

A second mic input circuit, MIC2 (Figure 7) is provided which consists of an amplifier which can be configured either as an inverting buffer for a single input signal or as a mixer/summer for multiple inputs with the use of external resistors. The circuit is enabled by the register bit MIC2EN.

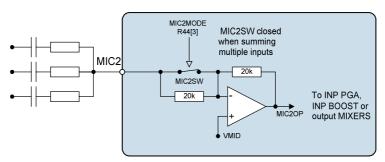


Figure 7 MIC2 Input Circuit

The MIC2MODE register bit controls the input mode of operation:

In buffer mode (MIC2MODE=0) the switch labelled MIC2SW in Figure 7 is open and the signal at the MIC2 pin will be buffered and inverted through the MIC2 circuit using only the internal components.

In mixer mode (MIC2MODE=1) the on-chip input resistor is bypassed, this allows the user to sum in multiple inputs with the use of external resistors. When used in this mode there will be gain variations through this path from part to part due to the variation of the internal $20k\Omega$ resistors relative to the higher tolerance external resistors.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 Power management	6	MIC2EN	0	MIC2 input buffer enable 0 = OFF 1 = ON
R44 Input control	3	MIC2MODE	0	0 = inverting buffer 1 = mixer (on-chip input resistor bypassed)

Table 2 MIC2 Input Buffer Control

INPUT BOOST

The input BOOST circuit has 3 selectable inputs: the input microphone PGA output, the MIC2 amplifier output and the MICP input pin (when not using a differential microphone configuration). These three inputs can be mixed together and have individual gain boost/adjust as shown in Figure 8

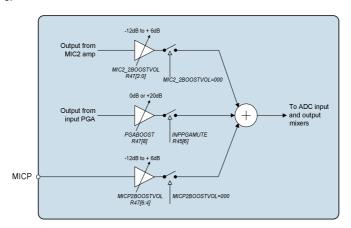


Figure 8 Input Boost Stage

The input PGA path can have a +20dB boost (PGABOOST=1) a 0dB pass through (PGABOOST=0) or be completely isolated from the input boost circuit (INPPGAMUTE=1).

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R45 Input PGA gain control	6	INPPGAMUTE	0	Mute control for input PGA: 0=Input PGA not muted, normal operation 1=Input PGA muted (and disconnected from the following input BOOST stage).
R47 Input BOOST control	8	PGABOOST	1	0 = PGA output has +0dB gain through input BOOST stage. 1 = PGA output has +20dB gain through input BOOST stage.

Table 3 Input BOOST Stage Control

The MIC2 amplifier path to the BOOST stage is controlled by the MIC2_2BOOSTVOL[2:0] register bits. When MIC2_2BOOSTVOL=000 this path is completely disconnected from the BOOST stage. Settings 001 through to 111 control the gain in 3dB steps from -12dB to +6dB.

The MICP path to the BOOST stage is controlled by the MICP2BOOSTVOL[2:0] register bits. When MICP2BOOSTVOL=000 this input pin is completely disconnected from the BOOST stage. Settings 001 through to 111 control the gain in 3dB steps from -12dB to +6dB.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R47 Input BOOST control	2:0	MIC2_2BOOSTV OL	000	Controls the MIC2 amplifier to the input boost stage: 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage 111=+6dB gain through boost stage
	6:4	MICP2BOOSTVOL	000	Controls the MICP pin to the input boost stage (NB, when using this path set MICPZIUNPPGA=0): 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage 111=+6dB gain through boost stage

Table 4 Input BOOST Stage Control

The BOOST stage is enabled under control of the BOOSTEN register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	4	BOOSTEN	0	Input BOOST enable
Power				0 = Boost stage OFF
management 2				1 = Boost stage ON

Table 5 Input BOOST Enable Control

MICROPHONE BIASING CIRCUIT

The MICBIAS output provides a low noise reference voltage suitable for biasing electret type microphones and the associated external resistor biasing network. Refer to the Applications Information section for recommended external components. The MICBIAS voltage can be altered via the MBVSEL register bit. When MBVSEL=0, MICBIAS=0.9*AVDD and when MBVSEL=1, MICBIAS=0.75*AVDD. The output can be enabled or disabled using the MICBEN control bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1	4	MICBEN	0	Microphone Bias Enable
Power				0 = OFF (high impedance output)
management 1				1 = ON

Table 6 Microphone Bias Enable

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R44	8	MBVSEL	0	Microphone Bias Voltage Control
Input Control				0 = 0.9 * AVDD
				1 = 0.65 * AVDD

Table 7 Microphone Bias Voltage Control

The internal MICBIAS circuitry is shown in Figure 9. Note that the maximum source current capability for MICBIAS is 3mA. The external biasing resistors therefore must be large enough to limit the MICBIAS current to 3mA.

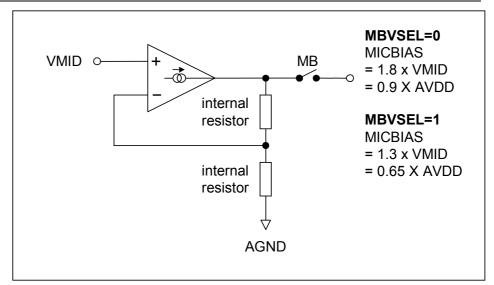


Figure 9 Microphone Bias Schematic

ANALOGUE TO DIGITAL CONVERTER (ADC)

The WM8510 uses a multi-bit, oversampled sigma-delta ADC channel. The use of multi-bit feedback and high oversampling rates reduces the effects of jitter and high frequency noise. The ADC Full Scale input level is proportional to AVDD. With a 3.3V supply voltage, the full scale level is 1.0V_{rms}. Any voltage greater than full scale may overload the ADC and cause distortion.

ADC DIGITAL FILTERS

The ADC filters perform true 24 bit signal processing to convert the raw multi-bit oversampled data from the ADC to the correct sampling frequency to be output on the digital audio interface. The digital filter path is illustrated in Figure 10.

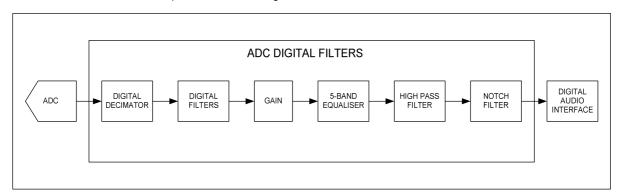


Figure 10 ADC Digital Filter Path

The ADC is enabled by the ADCEN register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	0	ADCEN	0	0 = ADC disabled
Power				1 = ADC enabled
management 2				

Table 8 ADC Enable

The polarity of the output signal can also be changed under software control using the ADCPOL register bit. The oversampling rate of the ADC can be adjusted using the ADCOSR register bit. With ADCOSR=0 the oversample rate is 64x which gives lowest power operation and when ADCOSR=1 the oversample rate is 128x which gives best performance.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R14	3	ADCOSR	0	ADC oversample rate select:
ADC Control				0=64x (lower power)
				1=128x (best performance)
	0	ADCPOL	0	0=normal
				1=inverted

Table 9 ADC Oversample Rate Select

SELECTABLE HIGH PASS FILTER

A selectable high pass filter is provided. To disable this filter set HPFEN=0. The filter has two modes controlled by HPFAPP. In Audio Mode (HPFAPP=0) the filter is first order, with a cut-off frequency of 3.7Hz. In Application Mode (HPFAPP=1) the filter is second order, with a cut-off frequency selectable via the HPFCUT register. The cut-off frequencies when HPFAPP=1 are shown in Table 11

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R14	8	HPFEN	1	High Pass Filter Enable
ADC Control				0=disabled
				1=enabled
	7	HPFAPP	0	Select audio mode or application mode
				0=Audio mode (1 st order, fc = ~3.7Hz)
				1=Application mode (2 nd order, fc = HPFCUT)
	6:4	HPFCUT	000	Application mode cut-off frequency
				See Table 11 for details.

Table 10 ADC Filter Select

HPFCUT		FS (KHZ)								
	8	SR=101/100 SR=011/010					SR=001/000			
	8	11.025	12	16	22.05	24	32	44.1	48	
000	82	113	122	82	113	122	82	113	122	
001	102	141	153	102	141	153	102	141	153	
010	131	180	196	131	180	196	131	180	196	
011	163	225	245	163	225	245	163	225	245	
100	204	281	306	204	281	306	204	281	306	
101	261	360	392	261	360	392	261	360	392	
110	327	450	490	327	450	490	327	450	490	
111	408	563	612	408	563	612	408	563	612	

Table 11 High Pass Filter Cut-off Frequencies (HPFAPP=1)

Note that the High Pass filter values (when HPFAPP=1) work on the basis that the SR register bits are set correctly for the actual sample rate as shown in Table 11.

PROGRAMMABLE NOTCH FILTER

A programmable notch filter is provided. This filter has a variable centre frequency and bandwidth, programmable via two coefficients, a0 and a1. These coefficients should be converted to 2's complement numbers to determine the register values. a0 and a1 are represented by the register bits NFA0[13:0] and NFA1[13:0]. Because these coefficient values require four register writes to setup there is an NFU (Notch Filter Update) flag which should be set only when all four registers are setup.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION		
R27	6:0	NFA0[13:7]	0	Notch Filter a0 coefficient, bits [13:7]		
Notch Filter 1	7	NFEN	0	Notch filter enable:		
				0=Disabled		
				1=Enabled		
	8	NFU	0	Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.		
R28	6:0	NFA0[6:0]	0	Notch Filter a0 coefficient, bits [6:0]		
Notch Filter 2	8	NFU]	0	Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.		
R29	6:0	NFA1[13:7]	0	Notch Filter a1 coefficient, bits [13:7]		
Notch Filter 3	8	NFU	0	Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.		
R30	6:0	NFA1[6:0]	0	Notch Filter a1 coefficient, bits [6:0]		
Notch Filter 4	8	NFU	0	Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.		

Table 12 Notch Filter Function

The coefficients are calculated as follows:

$$a_0 = \frac{1 - \tan(w_b/2)}{1 + \tan(w_b/2)}$$

$$a_1 = -(1 + a_0)\cos(w_0)$$

Where:

$$w_0 = 2\pi f_c / f_s$$

$$w_b = 2\pi f_b / f_s$$

 f_c = centre frequency in Hz, f_b = -3dB bandwidth in Hz, f_s = sample frequency in Hz

The coefficients are calculated as follows:

NFA0 =
$$-a0 \times 2^{13}$$

NFA1 =
$$-a1 \times 2^{12}$$

These values are then converted to 2's complement notation to determine the register values.

NOTCH FILTER WORKED EXAMPLE

The following example illustrates how to calculate the a0 and a1 coefficients for a desired centre frequency and -3dB bandwidth.

fc = 1000 Hz

fb = 100 Hz

fs = 48000 Hz

 $w_0 = 2\pi f_c / f_s = 2\pi \times (1000 / 48000) = 0.1308996939 \text{ rads}$

 $w_{b} = 2\pi f_{b} / f_{S} \ = \ 2\pi \ x \, (100 / 48000) = 0.01308996939 \; rads$

 $a_0 = \frac{1 - tan(w_b/2)}{1 + tan(w_b/2)} = \frac{1 - tan(0.01308996939/2)}{1 + tan(0.01308996939/2)} = 0.9869949627$

 $a_1 = -(1 + a_0)\cos(w_0) = -(1 + 0.9869949627)\cos(0.1308996939) = -1.969995945$

NFn_A0 = $-a0 \times 213 = -8085$ (rounded to nearest whole number)

NFn_A1 = -a1 \times 212 = 8069 (rounded to nearest whole number)

These values are then converted to 2's complement:

NFA0 = 14'h206B = 14'b10000001101011

NFA1 = 14'h1F85 = 14'b 01111110000101

DIGITAL ADC VOLUME CONTROL

The output of the ADCs can be digitally attenuated over a range from -127dB to 0dB in 0.5dB steps. The gain for a given eight-bit code X is given by:

Gain = 0.5 x (x-255) dB for $1 \le x \le 255$, MUTE for x = 0

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R15	7:0	ADCVOL	11111111	ADC Digital Volume Control
ADC Digital		[7:0]	(0dB)	0000 0000 = Digital Mute
Volume				0000 0001 = -127dB
				0000 0010 = -126.5dB
				0.5dB steps up to
				1111 1111 = 0dB

Table 13 ADC Volume

INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC)

The WM8510 has an automatic PGA gain control circuit, which can function as an input peak limiter or as an automatic level control (ALC).

The Automatic Level Control (ALC) provides continuous adjustment of the input PGA in response to the amplitude of the input signal. A digital peak detector monitors the input signal amplitude and compares it to a register defined threshold level (ALCLVL).

If the signal is below the threshold, the ALC will increase the gain of the PGA at a rate set by ALCDCY. If the signal is above the threshold, the ALC will reduce the gain of the PGA at a rate set by ALCATK.

The ALC has two modes selected by the ALCMODE register: normal mode and peak limiter mode. The ALC/limiter function is enabled by setting the register bit R32[8] ALCSEL.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R32 (20h)	2:0	ALCMIN	000 (-12dB)	Set minimum gain of PGA
ALC Control		[2:0]		000 = -12dB
1				001 = -6dB
				010 = 0dB
				011 = +6dB
				100 = +12dB
				101 = +18dB
				110 = +24dB
				111 = +30dB
	5:3 ALCMAX		111	Set Maximum Gain of PGA
		[2:0]	(+35.25dB)	111 = +35.25dB
				110 = +29.25dB
				101 = +23.25dB
				100 = +17.25dB
				011 = +11.25dB
				010 = +5.25dB
				001 = -0.75dB
				000 = -6.75dB
	8	ALCSEL	0	ALC function select
				0 = ALC disabled
				1 = ALC enabled

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R33 (21h) ALC Control 2	3:0	ALCLVL [3:0]	1011 (-12dB)	ALC target – sets signal level at ADC input 1111 = -6dBFS 1110 = -7.5dBFS 1101 = -9dBFS 1100 = -10.5dBFS 1011 = -12dBFS 1010 = -13.5dBFS 1001 = -15dBFS 1000 = -16.5dBFS 0111 = -18dBFS 0110 = -19.5dBFS 0110 = -21dBFS 0101 = -21dBFS 0100 = -25.5dBFS 0011 = -27dBFS 0001 = -27dBFS
	8 ALCZC 0 (zero cross off)			0000 = -28.5dBFS ALC uses zero cross detection circuit. 0 = Disabled (recommended) 1 = Enabled It is recommended that zero cross is not used in conjunction with the ALC or Limiter functions
	7:4	ALCHLD [3:0]	0000 (0ms)	ALC hold time before gain is increased. 0000 = 0ms 0001 = 2.67ms 0010 = 5.33ms 0011 = 10.66ms 0100 = 21.32ms 0101 = 42.64ms 0110 = 85.28ms 0111 = 0.17s 1000 = 0.34s 1001 = 0.68s 1010 or higher = 1.36s

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION				
R34 (22h)	8	ALCMODE	0	Determines the ALC mode of operation:				
ALC Control				0 = ALC mode (Normal Operation) 1 = Limiter mode.			ation)	
3								
	7:4	ALCDCY	0011	Decay (gain ramp-up) time				
		[3:0]	(26ms/6dB)	(ALCM	(ALCMODE ==0)			
					Per step	Per 6dB	90% of range	
				0000	410us	3.38ms	23.6ms	
				0001	820us	6.56ms	47.2ms	
				0010	1.64ms	13.1ms	94.5ms	
					e doubles w			
				1010	420ms	3.36s	24.2s	
				or higher	4201110	0.000	24.23	
			0011	Decay (gain ramp-up) time				
			(5.8ms/6dB)	(ALCM	(ALCMODE ==1)			
					Per step	Per 6dB	90% of range	
				0000	90.8us	726us	5.23ms	
				0001	182us	1.45ms	10.5ms	
				0010	363us	2.91ms	20.9ms	
				(time	e doubles w	ith every st	tep)	
				1010	93ms	744ms	5.36s	
	3:0	ALCATK [3:0]	0010 (3.3ms/6dB)	ALC attack (gain ramp-down) time (ALCMODE == 0)			time	
		[0.0]	(O.OMO/OGB)	(/ ILOIVI	Per	Per	90% of	
					step	6dB	range	
				0000	104us	832us	6ms	
				0001	208us	1.66ms	12ms	
				0010	416us	3.33ms	24ms	
				(time	e doubles w	ith every st	tep)	
				1010 or higher	106ms	852ms	6.13s	
			0010 (726us/6dB)	ALC attack (gain ramp-down) time (ALCMODE == 1)			time	
				,	Per step	Per 6dB	90% of range	
				0000	22.7us	182.4us	1.31ms	
				0001	45.4us	363us	2.62ms	
				0010	90.8us	726us	5.23ms	
					e doubles w			
				1010	23.2ms	186ms	1.34s	
				or higher				

Table 14 ALC Control Registers

When the ALC is disabled, the input PGA remains at the last controlled value of the ALC. An input gain update must be made by writing to the INPPGAVOLL/R register bits.