

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

WM8580

Multichannel CODEC with S/PDIF Transceiver

DESCRIPTION

The WM8580 is a multi-channel audio CODEC with S/PDIF transceiver. The WM8580 is ideal for DVD and surround sound processing applications for home hi-fi, automotive and other audiovisual equipment.

Integrated into the device is a stereo 24-bit multi-bit sigma delta ADC with support for digital audio output word lengths from 16-bit to 32-bit, and sampling rates from 8kHz to 192kHz.

Also included are three stereo 24-bit multi-bit sigma delta DACs, each with a dedicated oversampling digital interpolation filter. Digital audio input word lengths from 16-bits to 32-bits and sampling rates from 8kHz to 192kHz are supported. Each DAC channel has independent digital volume and mute control.

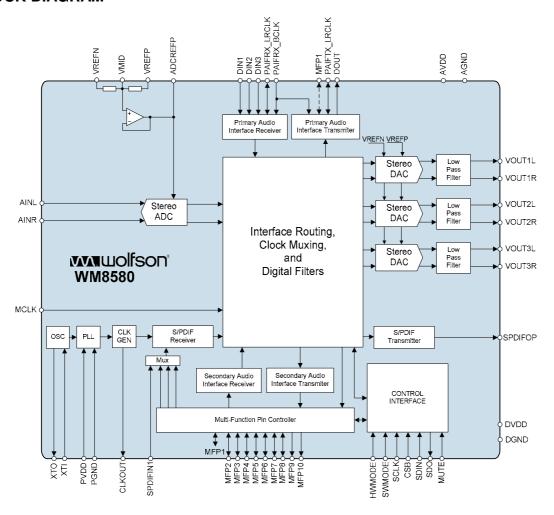
Two independent audio data interfaces support I²S, Left Justified, Right Justified and DSP digital audio formats. Each audio interface can operate in either Master Mode or Slave Mode

The S/PDIF transceiver is IEC-60958-3 compatible and supports frame rates from 32k/s to 192k/s. It has four multiplexed inputs and one output. Status and error monitoring is built-in and results can reported over the serial interface or via GPO pins. S/PDIF Channel Block configuration is also supported.

The device has two PLLs that can be configured independently to generate two system clocks for internal or external use.

Device control and setup is via a 2-wire or 3-wire (SPI compatible) serial interface. The serial interface provides access to all features including channel selection, volume controls, mutes, de-emphasis, S/PDIF control/status, and power management facilities. Alternatively, the device has a Hardware Control Mode where device features can be enabled/disabled using selected pins.

The device is available in a 48-lead TQFP package.


FEATURES

- Mutli-channel CODEC with 3 Stereo DACs and 1 Stereo ADC
- Integrated S/PDIF / IEC-60958-3 transceiver
- Audio Performance
 - 103dB SNR ('A' weighted @ 48kHz) DAC
 - -90dB THD (48kHz) DAC
 - 100dB SNR ('A' weighted @ 48kHz) ADC
 - -87dB THD (48kHz) ADC
- DAC Sampling Frequency: 8kHz 192kHz
- ADC Sampling Frequency: 8kHz 192kHz
- Independent ADC and DAC Sample Rates
- 2 and 3-Wire Serial Control Interface with readback, or Hardware Control Interface
- · GPO pins allow visibility of user selected status flags
- Programmable Audio Data Interface Modes
 - I²S, Left, Right Justified or DSP
 - 16/20/24/32 bit Word Lengths
- Three Independent Stereo DAC Outputs with Digital Volume Controls
- Two Independent Master or Slave Audio Data Interfaces
- Flexible Digital Interface Routing with Clock Selection Control
- 2.7V to 5.5V Analogue, 2.7V to 3.6V Digital Supply Operation
- 48-lead TQFP Package

APPLICATIONS

- Digital TV
- DVD Players and Receivers
- Surround Sound AV Processors and Hi-Fi systems
- Automotive Audio

BLOCK DIAGRAM

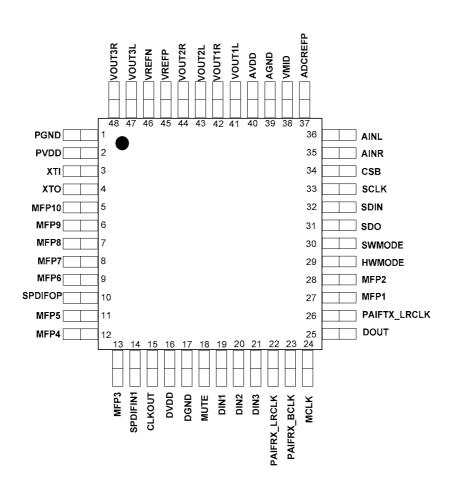


TABLE OF CONTENTS

DESCRIPTION	1
FEATURES	1
APPLICATIONS	1
BLOCK DIAGRAM	2
TABLE OF CONTENTS	3
PIN CONFIGURATION	4
ORDERING INFORMATION	4
PIN DESCRIPTION	5
MULTI-FUNCTION PINS	
ABSOLUTE MAXIMUM RATINGS	
RECOMMENDED OPERATING CONDITIONS	8
ELECTRICAL CHARACTERISTICS	
TERMINOLOGY	
MASTER CLOCK TIMING	
DIGITAL AUDIO INTERFACE - MASTER MODE	12
DIGITAL AUDIO INTERFACE - SLAVE MODE	13
CONTROL INTERFACE TIMING – 3-WIRE MODE	14
CONTROL INTERFACE TIMING – 2-WIRE MODE	15
DEVICE DESCRIPTION	16
INTRODUCTION	16
CONTROL INTERFACE OPERATION	17
DIGITAL AUDIO INTERFACES	21
AUDIO DATA FORMATS	23
AUDIO INTERFACE CONTROL	27
DAC FEATURES	29
ADC FEATURES	36
DIGITAL ROUTING OPTIONS	
CLOCK SELECTION	
PHASE-LOCKED LOOPS AND S/PDIF CLOCKING (SOFTWARE MODE)	
PHASE-LOCKED LOOPS AND S/PDIF CLOCKING (HARDWARE MODE)	
S/PDIF TRANSCEIVER	53
POWERDOWN MODES	65
INTERNAL POWER ON RESET CIRCUIT	67
HARDWARE CONTROL MODE	69
REGISTER MAP	
DIGITAL FILTER CHARACTERISTICS	
DAC FILTER RESPONSES	
DIGITAL DE-EMPHASIS CHARACTERISTICS	
ADC FILTER RESPONSES	
ADC HIGH PASS FILTER	
RECOMMENDED EXTERNAL COMPONENTS	
PACKAGE DIMENSIONS	-
IMPORTANT NOTICE	
ADDRESS:	92

PIN CONFIGURATION

ORDERING INFORMATION

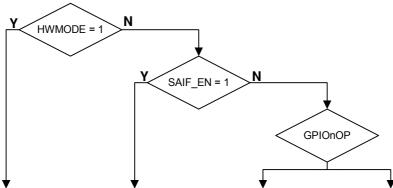
DEVICE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8580GEFT/V	-25 to +85°C	48-lead TQFP (Pb-free)	MSL1	260°C
WM8580GEFT/RV	-25 to +85°C	48-lead TQFP (Pb-free, tape and reel)	MSL1	260°C

Note:

Reel quantity = 2,200

PIN DESCRIPTION

PIN	NAME	TYPE	DESCRIPTION
1	PGND	Supply	PLL ground
2	PVDD	Supply	PLL positive supply
3	XTI	Digital Input	Crystal or CMOS clock input
4	XTO	Digital Output	Crystal output
5	MFP10	Digital Output	Multi-Function Pin (MFP) 10. See Table 1 for details of all MFP pins.
6	MFP9	Digital Output	Multi-Function Pin (MFP) 9. See Table 1 for details of all MFP pins.
7	MFP8	Digital Input/Output	Multi-Function Pin (MFP) 8. See Table 1 for details of all MFP pins.
8	MFP7	Digital Input/Output	Multi-Function Pin (MFP) 7. See Table 1 for details of all MFP pins.
9	MFP6	Digital Input/Output	Multi-Function Pin (MFP) 6. See Table 1 for details of all MFP pins.
10	SPDIFOP	Digital Output	S/PDIF transmitter output.
11	MFP5	Digital Input/Output	Multi-Function Pin (MFP) 5. See Table 1 for details of all MFP pins.
12	MFP4	Digital Input/Output	Multi-Function Pin (MFP) 4. See Table 1 for details of all MFP pins.
13	MFP3	Digital Input/Output	Multi-Function Pin (MFP) 3. See Table 1 for details of all MFP pins.
14	SPDIFIN1	Digital Input	S/PDIF receiver input 1
15	CLKOUT	Digital Output	PLL or crystal oscillator clock output
16	DVDD	Supply	Digital positive supply
17	DGND	Supply	Digital ground
18	MUTE	Digital Input/Output	DAC mute-all Input / All-DAC Infinite Zero Detect (IZD) flag output
19	DIN1	Digital Input	Primary Audio Interface (PAIF) receiver data input 1
20	DIN2	Digital Input	Primary Audio Interface (PAIF) receiver data input 2
21	DIN3	Digital Input	Primary Audio Interface (PAIF) receiver data input 3
22	PAIFRX_LRCLK	Digital Input/Output	Primary Audio Interface (PAIF) receiver left/right word clock
23	PAIFRX_BCLK	Digital Input/Output	Primary Audio Interface (PAIF) receiver bit clock
24	MCLK	Digital Input/Output	System Master clock; 256, 384, 512, 768, 1024 or 1152 fs
25	DOUT	Digital Output	Primary Audio Interface (PAIF) transmitter data output
26	PAIFTX_LRCLK	Digital Input/Output	Primary audio interface transmitter left/right word clock
27	MFP1	Digital Input/Output	Multi-Function Pin (MFP) 1. See Table 1 for details of all MFP pins.
28	MFP2	Digital Input/Output	Multi-Function Pin (MFP) 2. See Table 1 for details of all MFP pins.
29	HWMODE	Digital Input	Configures control to be either Software Mode or Hardware Mode
30	SWMODE	Digital Input/Output	Configures software interface to be either 2-wire or 3-wire. See note 2.
31	SDO	Digital Output	3-wire control interface data output. See note 3.
32	SDIN	Digital Input/Output	Control interface data input (and output under 2-wire control)
33	SCLK	Digital Input	Control interface clock
34	CSB	Digital Input	3-wire control interface latch signal / device address selection
35	AINR	Analogue Input	ADC Right Channel Input
36	AINL	Analogue Input	ADC Left Channel Input
37	ADCREFP	Analogue Output	ADC reference buffer decoupling pin; 10uF external decoupling
38	VMID	Analogue Output	Midrail divider decoupling pin; 10uF external decoupling
39	AGND	Supply	Analogue ground
40	AVDD	Supply	Analogue positive supply
41	VOUT1L	Analogue Output	DAC channel 1 left output
42	VOUT1R	Analogue Output	DAC channel 1 right output
43	VOUT2L	Analogue Output	DAC channel 2 left output
44	VOUT2R	Analogue Output	DAC channel 2 right output
45	VREFP	Analogue Input	DAC and ADC positive reference
46	VREFN	Analogue Input	DAC and ADC ground reference


PIN	NAME	TYPE	DESCRIPTION
47	VOUT3L	Analogue Output	DAC channel 3 left output
48	VOUT3R	Analogue Output	DAC channel 3 right output

Notes:

- 1. Digital input pins have Schmitt trigger input buffers. Pins 32, 33, 34 are 5V tolerant.
- 2. In hardware control mode, pin 30 is used for UNLOCK flag output.
- 3. In hardware control mode, pin 31 is used for NON_AUDIO flag output.

MULTI-FUNCTION PINS

The WM8580 has 8 Multi-Function Input/Output pins (MFP1 etc.). The function and direction (input/output) of these pins are configured using the HWMODE input pin and software register control as shown below. If HWMODE is set, the MFPs have the function shown in column 1 of Table 1. If HWMODE is not set, and the register SAIF_EN is set, the MFPs have the function shown in column 2. Otherwise, the GPOnOP registers determine the MFP function as shown in columns 3 and 4

PIN NAME	HARDWARE CONTROL MODE FUNCTION	SECONDARY AUDIO INTERFACE FUNCTION 2	S/PDIF INPUT & INDEPENDENT CLOCKING	GENERAL PURPOSE OUTPUT FUNCTION
	1	_	3	•
MFP1	PAIFTX_BCLK	n/a ¹	PAIFTX_BCLK ²	GPO1
MFP2	ADCMCLK	n/a ¹	ADCMCLK ³	GPO2
MFP3	DR1	n/a ¹	SPDIFIN2	GPO3
MFP4	DR2	n/a ¹	SPDIFIN3	GPO4
MFP5	DR3	n/a ¹	SPDIFIN4	GPO5
MFP6	DR4	SAIF_BCLK	GPO6	GPO6
MFP7	ALLPD	SAIF_LRCLK	GPO7	GPO7
MFP8	С	SAIF_DIN	GPO8	GPO8
MFP9	SFRM_CLK	SAIF_DOUT	GPO9	GPO9
MFP10	192BLK	n/a ¹	GPO10	GPO10

Table 1 Multi-Function Pin Configuration

Notes:

- These pins are not used as part of the Secondary Audio Interface, so their function is that of either Column 3 or Column 4.
- 2. MFP1 can by GPO1 only if ADC_CLKSEL and PAIFTXMST_CLKSEL (if in master mode) source MCLK.
- 3. MFP2 can be GPO2 if neither ADC_CLKSEL, TX_CLKSEL or SAIFMST_CLKSEL (if in master mode) source ADCMCLK.

PIN FUNCTION	TYPE	DESCRIPTION
PAIFTX_BCLK	Digital Input/Output	Primary Audio Interface Transmitter (PAIFTX) Bit Clock
ADCMCLK	Digital Input	Master ADC clock; 256fs, 384fs, 512fs ,786fs, 1024fs or 1152fs
SAIF_DIN	Digital Input	Secondary Audio Interface (SAIF) Receiver data input
SAIF_DOUT	Digital Output	Secondary Audio Interface (SAIF) Transmitter data output
SAIF_BCLK	Digital Input/Output	Secondary Audio Interface (SAIF) Bit Clock
SAIF_LRCLK	Digital Input/Output	Secondary Audio Interface (SAIF) Left/Right Word Clock
SPDIFIN2/3/4	Digital Input	S/PDIF Receiver Input
GPO1 – GPO10	Digital Output	General Purpose Output
DR1/2/3/4	Digital Input	Internal Digital Routing Configuration in Hardware Mode
ALLPD	Digital Input	Chip Powerdown in Hardware Mode
С	Digital Output	Recovered channel-bit for current S/PDIF sub-frame
SFRM_CLK	Digital Output	Indicates current S/PDIF sub-frame:
		1 = Sub-frame A
		0 = Sub-frame B
192BCLK	Digital Output	Indicates start of S/PDIF 192-frame block. High for duration of frame 0.

Table 2 Multi-Function Pin Description

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

The WM8580 has been classified as MSL1, which has an unlimited floor life at $<30^{\circ}$ C / 85% Relative Humidity and therefore will not be supplied in moisture barrier bags.

CONDITION	MIN	MAX
Digital supply voltage	-0.3V	+3.63V
Analogue supply voltage	-0.3V	+7V
PLL supply voltage	-0.3V	+5V
Voltage range digital inputs (SCLK, CSB & SDIN only)	DGND -0.3V	+7V
Voltage range digital inputs	DGND -0.3V	DVDD + 0.3V
Voltage range analogue inputs ¹	AGND -0.3V	AVDD +0.3V
	PGND -0.3V	PVDD +0.3V
Master Clock Frequency		37MHz
Operating temperature range, T _A	-25°C	+85°C
Storage temperature prior to soldering	30°C max /	85% RH max
Storage temperature after soldering -65°C		+150°C
Pb Free Package body temperature (soldering 10 seconds)		+260°C
Package body temperature (soldering 2 minutes)		+183°C

Notes: 1. Analogue and digital grounds must always be within 0.3V of each other.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply range	DVDD		2.7		3.6	V
Analogue supply range	AVDD, PVDD		2.7		5.5	V
Ground	AGND, VREFN, DGND. PGND			0		V
Difference DGND to AGND/PGND			-0.3	0	+0.3	V

Note: Digital supply DVDD must never be more than 0.3V greater than AVDD.

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, PGND, DGND = 0V, T_A = +25°C, 1kHz Signal, fs = 48kHz, 24-Bit Data, Slave Mode, MCLK, ADCMCLK = 256fs, $1V_{rms}$ Input Signal Level unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DAC Performance (Load = 10kΩ,	50pF)					
0dBFs Full scale output voltage			-6%	1.0 x VREFP/5	+6%	V _{rms}
Signal to Noise Ratio (Note 1,2,4)	SNR	A-weighted, @ fs = 48kHz	95	103		dB
		Unweighted, @ fs = 48kHz		100		dB
		A-weighted, @ fs = 48kHz, AVDD = 3.3V		99		dB
		A-weighted, @ fs = 96kHz		101		dB
		Unweighted, @ fs = 96kHz		98		dB
		A-weighted, @ fs = 96kHz, AVDD = 3.3V		99		dB
		A-weighted, @ fs = 192kHz		101		dB
		Unweighted, @ fs = 192kHz		98		dB
		A-weighted, @ fs = 192kHz, AVDD = 3.3V		99		dB
Dynamic Range (Note 2,4)	DNR	A-weighted, -60dB full scale input	95	103		dB
Total Harmonic Distortion	THD	1kHz, 0dB Full Scale @ fs = 48kHz		-90	-85	dB
		1kHz, 0dB Full Scale @ fs = 96kHz		-87		dB
		1kHz, 0dB Full Scale @ fs = 192kHz		-84		dB
DAC Channel separation				100		dB
Mute Attenuation		1kHz Input, 0dB gain		100		dB
Output Offset Error				2		mV

Test Conditions

AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, PGND, DGND = 0V, T_A = +25°C, 1kHz Signal, fs = 48kHz, 24-Bit Data, Slave Mode, MCLK, ADCMCLK = 256fs, 1V_{rms} Input Signal Level unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply Rejection Ratio	PSRR	1kHz 100mV _{p-p}		50		dB
		20Hz to 20kHz		45		dB
		100mV _{p-p}				
ADC Performance	T	1	T			
Full Scale Input Signal Level (for ADC 0dB Input)				1.0 x		V_{rms}
Input resistance				VREFP/5 20		kΩ
Input capacitance				10		pF
Signal to Noise Ratio (Note	SNR	A-weighted,	90	100		dB
1,2,4)	0	@ fs = 48kHz	00	100		45
		Unweighted, @ fs = 48kHz		97		dB
		A-weighted,		97		dB
		@ fs = 48kHz, AVDD = 3.3V				
		A-weighted,		97		dB
		@ fs = 96kHz				
		Unweighted,		94		dB
		@ fs = 96kHz				
		A-weighted,		94		dB
		@ fs = 96kHz, AVDD = 3.3V				
		A-weighted,		97		dB
		@ fs = 192kHz				
		Unweighted,		94		dB
		@ fs = 192kHz				
		A-weighted,		94		dB
		@ fs = 192kHz, AVDD = 3.3V				
Total Harmonic Distortion	THD	1kHz, -1dB Full Scale @ fs = 48kHz		-87	-80	dB
		1kHz, -1dB Full Scale		-86		dB
		@ fs = 96kHz				
		1kHz, -1dB Full Scale @ fs = 192kHz		-85		dB
Dynamic Range	DNR	-60dB FS	90	100		
ADC Channel Separation		1kHz Input		100		dB
Channel Level Matching (Note 4)		1KHz Signal		0.1		dB
Channel Phase Deviation		1kHz Signal		0.0001		Degree
Offset Error		HPF On		0		LSB
		HPF Off		100		LSB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50		dB
		20Hz to 20kHz 100mVpp		45		dB
Digital Logic Levels (CMOS Leve	els)					
Input LOW level	V _{IL}				0.3 x DVDD	V
Input HIGH level	V _{IH}		0.7 x DVDD			V
Input leakage current			-1	±0.2	+1	μA
Input capacitance				5		pF
Output LOW	V _{OL}	I _{OL} =1mA			0.1 x DVDD	V
Output HIGH	V _{OH}	I _{OH} = -1mA	0.9 x DVDD			V

Test Conditions

AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, PGND, DGND = 0V, T_A = +25°C, 1kHz Signal, fs = 48kHz, 24-Bit Data, Slave Mode, MCLK, ADCMCLK = 256fs, 1V_{rms} Input Signal Level unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analogue Reference Levels						
Reference voltage	V _{VMID}		VREFP/2 – 50mV	VREFP/2	VREFP/2 + 50mV	V
Potential divider resistance	R _{VMID}	VREFP to VMID and VMID to VREFN VMIDSEL = 1		20		kΩ
		VREFP to VMID and VMID to VREFN		100		kΩ
		VMIDSEL = 0				
S/PDIF Transceiver Performan	се					
Jitter on recovered clock				50		ps
S/PDIF Input Levels CMOS MC	DE					
Input LOW level	V _{IL}				0.3 X DVDD	V
Input HIGH level	V _{IH}		0.7 X DVDD			V
Input capacitance				1.25		pF
Input Frequency					36	MHz
S/PDIF Input Levels Comparat	or MODE					
Input capacitance				1.31		pF
Input resistance				18		kΩ
Input frequency					25	MHz
Input Amplitude			200		0.5 X DVDD	mV
PLL						
Period Jitter				80		ps(rms)
XTAL						
Input XTI LOW level	VX _{IL}		0		557	mV
Input XTI HIGH level	VX _{IH}		853			mV
Input XTI capacitance	C _{XJ}		3.32		4.491	pF
Input XTI leakage	IX _{leak}		28.92		38.96	mA
Output XTO LOW	VX _{OL}	15pF load capacitors	86		278	mV
Output XTO HIGH	VX _{OH}	15pF load capacitors	1.458		1.942	V
Supply Current	·	•	•			
Analogue supply current		AVDD, VREFP = 5V		45		mA
Analogue supply current		AVDD, VREFP = 3.3V		30		mA
Digital supply current		DVDD = 3.3V		16		mA
Power Down				10		uA

Notes:

- Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured 'A' weighted.
- All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.
- 3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).

TERMINOLOGY

- 1. Signal-to-noise ratio (dB) SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
- Dynamic range (dB) DNR is a measure of the difference between the highest and lowest portions of a signal.
 Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).
- 3. THD (dB) THD is a ratio, of the rms values, of Distortion/Signal.

4. Stop band attenuation (dB) - Is the degree to which the frequency spectrum is attenuated (outside audio band).

- 5. Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.
- 6. Pass-Band Ripple Any variation of the frequency response in the pass-band region.

MASTER CLOCK TIMING

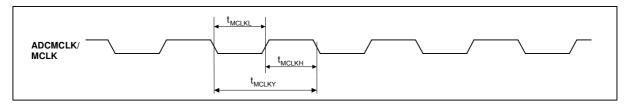


Figure 1 Master Clock Timing Requirements

Test Conditions

AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, PGND, DGND = 0V, T_A = +25 $^{\circ}$ C

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
System Clock Timing Information							
ADCMCLK and MCLK System clock pulse width high	t _{MCLKH}		11			ns	
ADCMCLK and MCLK System clock pulse width low	t _{MCLKL}		11			ns	
ADCMCLK and MCLK System clock cycle time	t _{MCLKY}		28			ns	
ADCMCLK and MCLK Duty cycle			40:60		60:40		

Table 3 Master Clock Timing Requirements

DIGITAL AUDIO INTERFACE – MASTER MODE

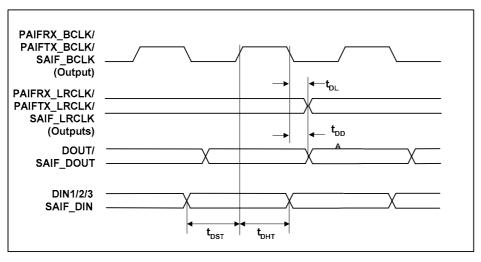


Figure 2 Digital Audio Data Timing – Master Mode

Test Conditions

AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN, PGND, DGND = 0V, T_A = +25°C, Master Mode, fs = 48kHz, MCLK and ADCMCLK = 256fs unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Audio Data Input Timing Info	Audio Data Input Timing Information							
PAIFTX_LRCLK/	t_{DL}		0		10	ns		
PAIFRX_LRCLK/								
SAIF_LRCLK propagation delay from PAIFTX_BCLK/								
PAIFRX_BCLK/ SAIF_BCLK falling edge								
DOUT/SAIF_DOUT propagation delay from PAIFTX_BCLK/ SAIF_BCLK falling edge	t _{DDA}		0		10	ns		
DIN1/2/3/SAIF_DIN setup time to PAIFRX_BCLK/SAIF_BCLK rising edge	tоsт		10			ns		
DIN1/2/3/SAIF_DIN hold time from PAIFRX_BCLK/SAIF_BCLK rising edge	t _{онт}		10			ns		

Table 4 Digital Audio Data Timing - Master Mode

DIGITAL AUDIO INTERFACE – SLAVE MODE

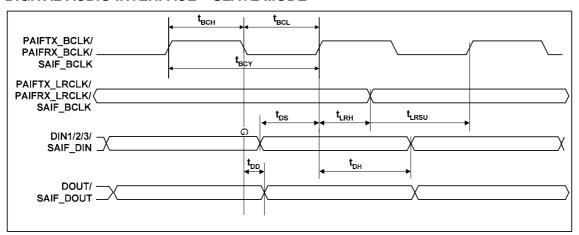


Figure 3 Digital Audio Data Timing - Slave Mode

Test Conditions

AVDD, PVDD = 5V, DVDD = 3.3V, AGND = 0V, PGND, DGND = 0V, $T_A = +25^{\circ}C$, Slave Mode, fs = 48kHz, MCLK and ADCMCLK = 256fs unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Audio Data Input Timing Informatio	n					
PAIFTX_BCLK/ PAIFRX BCLK/SAIF BCLK cycle	t _{BCY}		50			ns
time						
PAIFTX_BCLK/ PAIFRX_BCLK/SAIF_BCLK pulse width high	t _{BCH}		20			ns
PAIFTX_BCLK/ PAIFRX_BCLK/SAIF_BCLK pulse width low	t _{BCL}		20			ns
PAIFTX_LRCLK/ PAIFRX_LRCLK/SAIF_BCLK set-up time to PAIFTX_BCLK/ PAIFRX_BCLK/SAIF_BCLK rising	t _{LRSU}		10			ns
edge						
PAIFTX_LRCLK/ PAIFRX_LRCLK/ SAIF_LRCLK hold time from PAIFTX_BCLK/ PAIFRX_BCLK/SAIF_BCLK rising edge	t _{LRH}		10			ns
DIN1/2/3/SAIF_DIN set-up time to PAIFRX_BCLK/ SAIF_BCLK rising edge	t _{DS}		10			ns
DIN1/2/3/SAIF_DIN hold time from PAIFRX_BCLK/SAIF_BCLK rising edge	t _{DH}		10			ns
DOUT/SAIF_DOUT propagation delay from PAIFTX_BCLK/SAIF_BCLK falling edge	t _{DD}		0		10	ns

Table 5 Digital Audio Data Timing - Slave Mode

CONTROL INTERFACE TIMING – 3-WIRE MODE

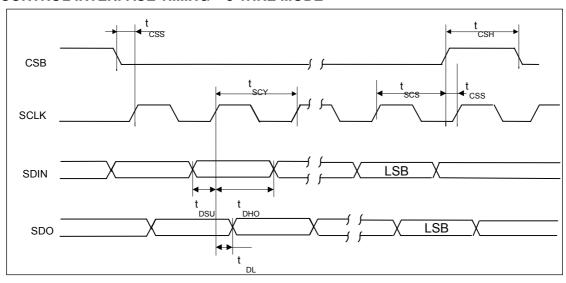


Figure 4 SPI Compatible Control Interface Input Timing

Test Conditions

AVDD, PVDD = 5V,DVDD = 3.3V, AGND, PGND,DGND = 0V, T_A = $+25^{\circ}$ C, fs = 48kHz, MCLK and ADCMCLK = 256fs unless otherwise stated

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
SCLK rising edge to CSB rising edge	t _{scs}	60			ns
SCLK pulse cycle time	tscy	80			ns
SCLK duty cycle		40/60		60/40	ns
SDIN to SCLK set-up time	t _{DSU}	20			ns
SDIN hold time from SCLK rising edge	t _{DHO}	20			ns
SDO propagation delay from SCLK rising edge	t _{DL}			5	ns
CSB pulse width high	t _{сsн}	20			ns
CSB rising/falling to SCLK rising	tcss	20			ns
Pulse width of spikes that will be suppressed	t _{ps}	2		8	ns

Table 6 3-wire SPI Compatible Control Interface Input Timing Information

CONTROL INTERFACE TIMING – 2-WIRE MODE

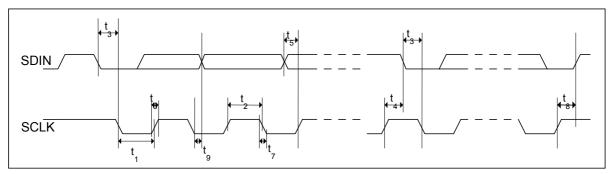


Figure 5 Control Interface Timing – 2-Wire Serial Control Mode

Test Conditions

AVDD, PVDD = 5V,DVDD = 3.3V, AGND, PGND,DGND = 0V, T_A = +25°C, fs = 48kHz, MCLK and ADCMCLK = 256fs unless otherwise stated

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT			
Program Register Input Information								
SCLK Frequency		0		526	kHz			
SCLK Low Pulse-Width	t ₁	1.3			us			
SCLK High Pulse-Width	t ₂	600			ns			
Hold Time (Start Condition)	t ₃	600			ns			
Setup Time (Start Condition)	t ₄	600			ns			
Data Setup Time	t ₅	100			ns			
SDIN, SCLK Rise Time	t ₆			300	ns			
SDIN, SCLK Fall Time	t ₇			300	ns			
Setup Time (Stop Condition)	t ₈	600			ns			
Data Hold Time	t ₉			900	ns			
Pulse width of spikes that will be suppressed	t _{ps}	0		5	ns			

Table 7 2-Wire Control Interface Timing Information

DEVICE DESCRIPTION

INTRODUCTION

WM8580 is a complete mutli-channel CODEC with integrated S/PDIF transceiver. The device comprises three separate stereo DACs and a stereo ADC, in a single package, and controlled by either software or hardware interfaces.

The three stereo DAC outputs are ideal to implement a complete 5.1 channel surround system. Each DAC has its own digital volume control (adjustable in 0.5dB steps) with zero cross detection. With zero cross enabled, volume updates occur as a signal transitions through its zero point. This minimises audible clicks and 'zipper' noise as the gain values change.

Each stereo DAC has its own data input (DIN1/2/3) and shared word clock (PAIFRX_LRCLK), bit clock (PAIFRX_BCLK) and master clock (MCLK). The stereo ADC has data output (DOUT), word clock (PAIFTX_LRCLK), and bit clock (PAIFTX_BCLK). This allows the ADC to operate at a different sample rate to the DACs. In addition, a separate ADC master clock (ADCMCLK) can be used instead of MCLK for further flexibility.

There are two independent Digital Audio Interfaces, which may be configured to operate in either master or slave mode. In Slave mode, the LRCLKs and BCLKs are inputs. In Master mode, the LRCLKs and BCLKs are outputs.

The Audio Interfaces support Right Justified, Left Justified, I²S and DSP formats. Word lengths of 16, 20, 24 and 32 bits are available (with the exception of 32 bit Right Justified).

Operation using system clocks of 128fs, 192fs, 256fs, 384fs, 512fs, 768fs or 1152fs is provided. In Slave mode, selection between clock rates is automatically controlled. In master mode, the master clock to sample rate ratio is set by register control. Sample rates (fs) from less than 8ks/s up to 192ks/s are permitted providing the appropriate system clock is input.

The S/PDIF Transceiver is IEC-60958-3 compatible with 32k frames/s to 192k frames/s support. S/PDIF data can be input on one of four pins, and routed internally to the Audio Interfaces, DAC1, and S/PDIF transmitter. Error flags and status information can be read back over the serial interface, or output on GPO pins. The S/PDIF Transmitter can source data from the ADC, S/PDIF Receiver or Audio Interfaces. The Transceiver supports Consumer Mode Channel information, and transmitted Channel bits can be configured via register control.

The Digital Routing paths between all the interfaces can be configured by the user, as can the corresponding interface clocking schemes.

There are two PLLs, which can be independently configured to generate two system clocks for internal or external use.

The serial control interface is controlled by pins CSB, SCLK, and SDIN, which are 5V tolerant with TTL input thresholds, allowing the WM8580 to be used with DVDD = 3.3V and be controlled by a controller with 5V output. SDO allows status registers to be read back over the serial interface (SDO is not 5V tolerant).

The WM8580 may also be controlled in hardware mode, selected by the HWMODE pin. In hardware mode, limited control of internal functionality is available via the Multi-Function Pins (MFPs) and CSB, SCLK, SDIN and MUTE pins.

CONTROL INTERFACE OPERATION

Control of the WM8580 is implemented either in Hardware Control Mode or Software Control Mode. The method of control is determined by the state of the HWMODE pin. If the HWMODE pin is low, Software Control Mode is selected. If the HWMODE pin is high, Hardware Control Mode is selected. The Software Control Interface is described below and Hardware Control Mode is described on page 69

Software control is implemented with a 3-wire (3-wire write, 4-wire read, SPI compatible) or 2-wire (2-wire write, 3-wire read) serial interface.

The interface configuration is determined by the state of the SWMODE pin. If the SWMODE pin is low, the 2-wire configuration is selected. If SWMODE is high the 3-wire SPI compatible configuration is selected.

HWN	IODE	SWMODE		
0	1	0	1	
Software Control	Hardware Control	2-wire control	3-wire control	

Table 8 Hardware/Software Mode Setup

The control interface is 5V tolerant, meaning that the control interface input signals CSB, SCLK and SDIN may have an input high level of 5V while DVDD is 3V. Input thresholds are determined by DVDD.

3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE WITH READ-BACK

SDIN is used to program data, SCLK is used to clock in the program data and CSB is used to latch the program data. SDIN is sampled on the rising edge of SCLK. The 3-wire interface write protocol is shown in Figure 6.

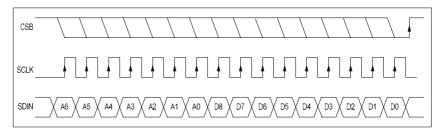


Figure 6 3-Wire SPI Compatible Interface

- 1. A[6:0] are Control Address Bits
- 2. D[8:0] are Control Data Bits
- 3. CSB is edge sensitive the data is latched on the rising edge of CSB.

REGISTER READ-BACK

The read-only status registers can be read back via the SDO pin. To enable readback the READEN control register bit must be set. The status registers can then be read using one of two methods, selected by the CONTREAD register bit.

With CONTREAD set, a single register can be read back simply by writing to any other register or a dummy register. The register to be readback is determined by the READMUX[2:0] bits. When a write to the device is done, the device will respond with the status byte set by the READMUX register bits in the last 8 bits of the write.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R52	2:0	READMUX	000	Determines which status register
READBACK		[2:0]		is to be read back:
34h				000 = Error Register
				001 = Channel Status Register 1
				010 = Channel Status Register 2
				011 = Channel Status Register 3
				100 = Channel Status Register 4
				101 = Channel Status Register 5
				110 = S/PDIF Status Register
	3	CONTREAD	0	Continuous Read Enable.
				0 = Continuous read-back mode
				disabled
				1 = Continuous read-back mode enabled
	4	READEN	0	Read-back mode enable.
				0 = read-back mode disabled
				1 = read-back mode enabled

Table 9 Read-back Control Register

The 3-wire interface readback protocol is shown below. Note that the SDO pin is tri-state unless CSB is held low; therefore CSB must be held low for the duration of the read.

READEN=1 & CONTREAD=1

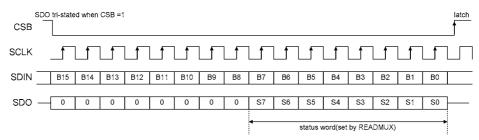


Figure 7 3-Wire SPI Compatible Interface Continuous Readback

If CONTREAD is set to zero, the user can read back directly from the register by writing to the register address, to which the device will respond with data. The protocol for this system is shown in Figure 8 below.

READEN=1 & CONTREAD=0

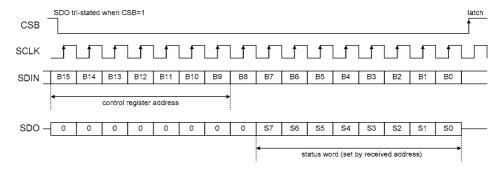


Figure 8 3-Wire SPI Compatible Control Interface Non-Continuous Readback

2-WIRE SERIAL CONTROL MODE WITH READ-BACK

The WM8580 supports software control via a 2-wire read/write serial bus. Many devices can be controlled by the same bus, and each device has a unique 7-bit address (see Table 10).

The controller indicates the start of data transfer with a high to low transition on SDIN while SCLK remains high. This indicates that a device address and data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the address of the WM8580, the WM8580 responds by pulling SDIN low on the next clock pulse (ACK). If the address is not recognised, the WM8580 returns to the idle condition and wait for a new start condition and valid address.

Once the WM8580 has acknowledged a correct address, the controller sends the first byte of control data (B15 to B8, i.e. the WM8580 register address plus the first bit of register data). The WM8580 then acknowledges the first data byte by pulling SDIN low for one clock pulse. The controller then sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register data), and the WM8580 acknowledges again by pulling SDIN low.

The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high. After receiving a complete address and data sequence the WM8580 returns to the idle state and waits for another start condition. If a start or stop condition is detected out of sequence at any point during data transfer (i.e. SDIN changes while SCLK is high), the device jumps to the idle condition.

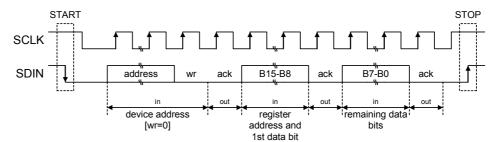


Figure 9 2-Wire Serial Control Interface

The WM8580 has two possible device addresses, which can be selected using the CSB pin.

CSB STATE	DEVICE ADDRESS IN 2- WIRE MODE
Low or Unconnected	0011010
High	0011011

Table 10 2-Wire MPU Interface Address Selection

REGISTER READBACK

The WM8580 allows readback of certain registers in 2-wire mode, with data output on the SDO pin. As in 3-wire mode, there are two methods of reading back data: continuous and non-continuous readback. Continuous readback is set by writing to the Readback Control register (see Table 9) to set READEN and CONTREAD to 1, and to set the READMUX bits to select the register to be read back. The status of this register can then be readback using the protocol shown in Figure 10.

READ STATUS WORD (READEN=1 & CONTREAD=1)

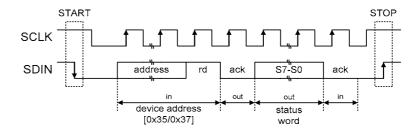


Figure 10 2-Wire Continuous Readback

If CONTREAD is set to zero, the user can read back directly from the register by writing to the register address, to which the device will respond with data. The protocol for this system is shown in Figure 11.

READ STATUS WORD (READEN=1 & CONTREAD=0)

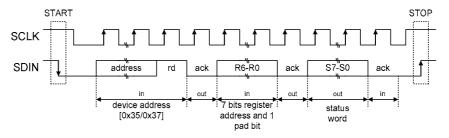


Figure 11 2-Wire Non-Continuous Readback

SOFTWARE REGISTER RESET

Writing to register R53 will cause a register reset, resetting all register bits to their default values. Note that the WM8580 is powered down by default so writing to this register will power down the device.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R53	8:0	RESET	n/a	Writing any data value to this register
RESET				will apply a reset to the device
35h				registers.

Table 11 Software Reset

DIGITAL AUDIO INTERFACES

Audio data is transferred to and from the WM8580 via the digital audio interfaces. There are two receive audio interfaces and two transmit audio interfaces. The digital routing options for these interfaces are described on page 21. Control of the audio interfaces is described below.

MASTER AND SLAVE MODES

The audio interfaces require both a left-right-clock (LRCLK) and a bit-clock (BCLK). These can be supplied externally (slave mode) or they can be generated internally (master mode). When in master mode, the BCLKs and LRCLKs for an interface are output on the corresponding BCLK and LRCLK pins. By default, all interfaces operate in slave mode, but can operate in master mode by setting the PAIFTXMS, PAIFRXMS and SAIFMS register bits. In Hardware Control Mode, the PAIF Transmitter can operate in master mode by setting the SDI pin.

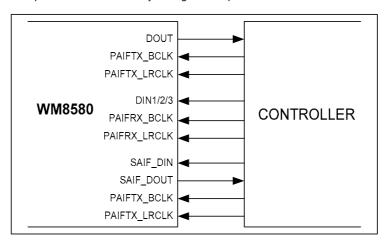


Figure 12 Slave Mode

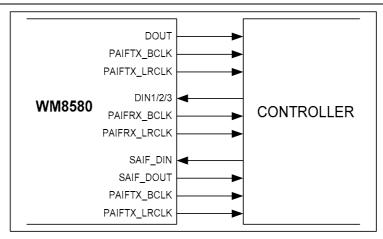


Figure 13 Master Mode

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R9	5	PAIFRX	0	PAIF Receiver Master/Slave Mode Select:
PAIF 1		MS		0 = Slave Mode
09h				1 = Master Mode
R10	5	PAIFTX	0	PAIF Transmitter Master/Slave Mode Select:
PAIF 2		MS		0 = Slave Mode
0Ah				1 = Master Mode
R11	5	SAIFMS	0	SAIF Master/Slave Mode Select:
SAIF 1				0 = Slave Mode
0Bh				1 = Master Mode

Table 12 Master Mode Registers

The frequency of a master mode LRCLK is dependant on system clock and the RATE register control bits. Table 13 shows the settings for common sample rates and system clock frequencies.

SAMPLING RATE		MCLK CLOCK FREQUENCY (MHZ)						
(LRCLK)	128fs	192fs	256fs	384fs	512fs	768fs	1152fs	
	RATE =000	RATE =001	RATE =010	RATE =011	RATE =100	RATE =101	RATE =110	
32kHz	4.096	6.144	8.192	12.288	16.384	24.576	36.864	
44.1kHz	5.6448	8.467	11.2896	16.9344	22.5792	33.8688	Unavailable	
48kHz	6.144	9.216	12.288	18.432	24.576	36.864	Unavailable	
88.2kHz	11.2896	16.9344	22.5792	33.8688	Unavailable	Unavailable	Unavailable	
96kHz	12.288	18.432	24.576	36.864	Unavailable	Unavailable	Unavailable	
176.4kHz	22.5792	33.8688	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable	
192kHz	24.576	36.864	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable	

Table 13 Master Mode MCLK / LRCLK Frequency Selection

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R9 PAIF 1 09h	2:0	PAIFRX_RATE [2:0]	010	Master Mode MCLK/LRCLK Ratio: 000 = 128fs
R10 PAIF 2 0Ah	2:0	PAIFTX_RATE [2:0]	010	001 = 192fs 010 = 256fs 011 = 384fs
R11 SAIF 1 0Bh	2:0	SAIF_RATE [2:0]	010	100 = 512fs 101 = 768fs 110 = 1152fs

Table 14 Master Mode RATE Registers

In master mode, the BCLKSEL register controls the number of BCLKs per LRCLK. If the MCLK:LRCLK ratio is 128fs or 192fs and BCLKSEL = 10, BCLKSEL is overwritten to be 128 BCLKs/LRCLK. Also, if BCLKSEL = 00, and LRCLK is 192fs or 1152fs, the generated BCLK has a mark-space ratio of 1:2.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R9	4:3	PAIFRX_BCLKSEL	00	Master Mode BCLK Rate:
PAIF 1		[1:0]		00 = 64 BCLKs/LRCLK
09h				01 = 128 BCLKs/LRCLK
R10	4:3	PAIFTX_BCLKSEL	00	10 = 256 BCLKs/LRCLK
PAIF 2		[1:0]		11 = BCLK = System Clock.
0Ah				
R11	4:3	SAIF_BCLKSEL	00	
SAIF 1		[1:0]		
0Bh				

Table 15 Master Mode BCLK Control

AUDIO DATA FORMATS

Five popular interface formats are supported:

- Left Justified mode
- Right Justified mode
- I²S mode
- DSP Mode A
- DSP Mode B

All five formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the exception of 32 bit right justified mode, which is not supported.

Audio Data for each stereo channel is time multiplexed with the interface's Left-Right-Clock (LRCLK), indicating whether the left or right channel is present. The LRCLK is also used as a timing reference to indicate the beginning or end of the data words.

In Left Justified, Right Justified and I²S modes, the minimum number of BCLKs per LRCLK period is 2 times the selected word length. LRCLK must be high for a minimum of BCLK periods equivalent to the audio word length, and low for minimum of the same number of BCLK periods. Any mark to space ratio on LRCLK is acceptable provided these requirements are met.

In DSP modes A and B, left and right channels must be time multiplexed and input on the input data line on the Audio Interface. For the PAIF Receiver, all three left/right DAC channels are multiplexed on DIN1 (assuming DAC_SEL = 00). LRCLK is used as a frame synchronisation signal to identify the MSB of the first word. The minimum number of BCLKs per LRCLK period is six times the selected

word length. Any mark to space ratio is acceptable on LRCLK provided the rising edge is correctly positioned.

LEFT JUSTIFIED MODE

In Left Justified mode, the MSB of the input data is sampled by the WM8580 on the first rising edge of BCLK following a LRCLK transition. The MSB of the output data changes on the same falling edge of BCLK as LRCLK and may be sampled on the next rising edge of BCLK. LRCLK is high during the left samples and low during the right samples.

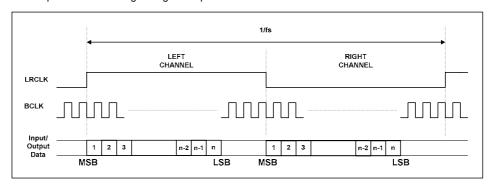


Figure 14 Left Justified Mode Timing Diagram

RIGHT JUSTIFIED MODE

In Right Justified mode, the LSB of input data is sampled on the rising edge of BCLK preceding a LRCLK transition. The LSB of the output data changes on the falling edge of BCLK preceding a LRCLK transition, and may be sampled on the next rising edge of BCLK. LRCLKs are high during the left samples and low during the right samples.

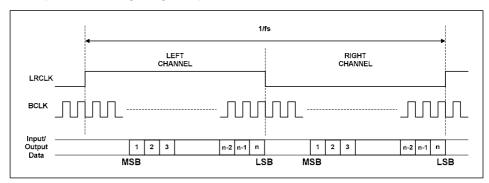


Figure 15 Right Justified Mode Timing Diagram

I2S MODE

In 1^2 S mode, the MSB of DIN1/2/3 is sampled on the second rising edge of BCLK following a LRCLK transition. The MSB of the output data changes on the first falling edge of BCLK following an LRCLK transition, and may be sampled on the next rising edge of BCLK. LRCLKs are low during the left samples and high during the right samples.

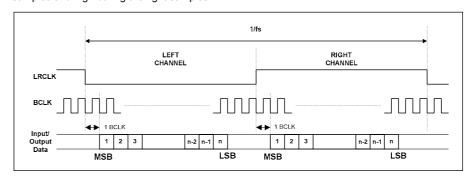


Figure 16 I²S Mode Timing Diagram

DSP MODE A

In DSP Mode A, the MSB of Channel 1 left data is sampled on the second rising edge of BCLK following a LRCLK rising edge. Channel 1 right data then follows. For the PAIF Receiver, Channels 2 and 3 follow as shown in Figure 17.

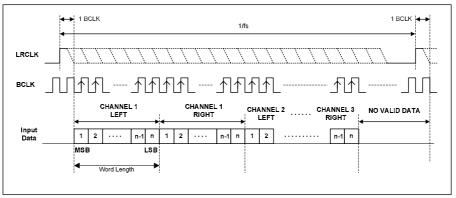


Figure 17 DSP Mode A Timing Diagram - PAIF Receiver Input Data

For the SAIF receiver, only stereo information is processed.

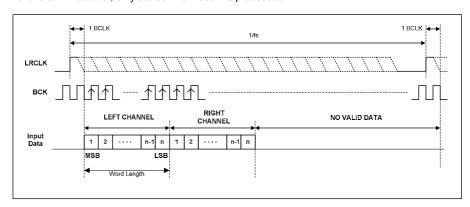


Figure 18 DSP Mode A Timing Diagram - SAIF Receiver Input Data

