imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

WM8770

24-bit, 192kHz 8-Channel CODEC with Volume Control

DESCRIPTION

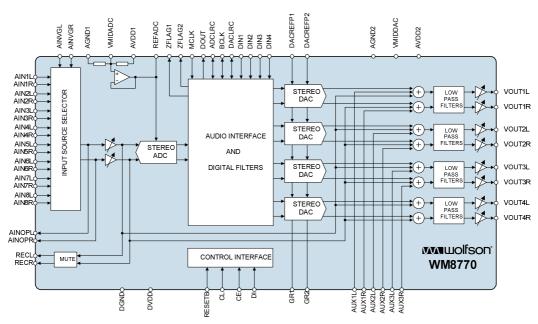
The WM8770 is a high performance, multi-channel audio codec. The WM8770 is ideal for surround sound processing applications for home hi-fi, automotive and other audio visual equipment.

A stereo 24-bit multi-bit sigma delta ADC is used with an eight stereo channel input selector. Each channel has analogue domain mute and programmable gain control. Digital audio output word lengths from 16-32 bits and sampling rates from 8kHz to 96kHz are supported.

Four stereo 24-bit multi-bit sigma delta DACs are used with oversampling digital interpolation filters. Digital audio input word lengths from 16-32 bits and sampling rates from 8kHz to 192kHz are supported. Each DAC channel has independent analogue volume and mute control, with a set of input multiplexors allowing selection of an external 3 channel stereo analogue input into these volume controls.

The audio data interface supports I^2S , left justified and right justified digital audio formats.

The device is controlled via a 3 wire serial interface. The interface provides access to all features including channel selection, volume controls, mutes, de-emphasis and power management facilities. The device is available in a 64-lead TQFP package.


BLOCK DIAGRAM

FEATURES

- Audio Performance
 - 106dB SNR ('A' weighted @ 48kHz) DAC
 - 102dB SNR ('A' weighted @ 48kHz) ADC
- DAC Sampling Frequency: 8KHz 192kHz
- ADC Sampling Frequency: 8KHz 96kHz
- 3-Wire SPI or CCB MPU Serial Control Interface
- Master or Slave Clocking Mode
- Programmable Audio Data Interface Modes
 - I²S, Left or Right Justified
 - 16/20/24/32 bit Word Lengths
- Four Independent stereo DAC outputs with independent analogue and digital volume controls
- Analogue Bypass Path Feature
- Six channel selectable AUX input to the volume controls
- Eight stereo ADC inputs with analogue gain adjust from +19dB to –12dB in 1dB steps
- 2.7V to 5.5V Analogue, 2.7V to 3.6V Digital supply Operation
- 5V tolerant digital inputs

APPLICATIONS

- Surround Sound AV Processors and Hi-Fi systems
- Automotive Audio

WOLFSON MICROELECTRONICS plc

Production Data, March 2011, Rev 4.3

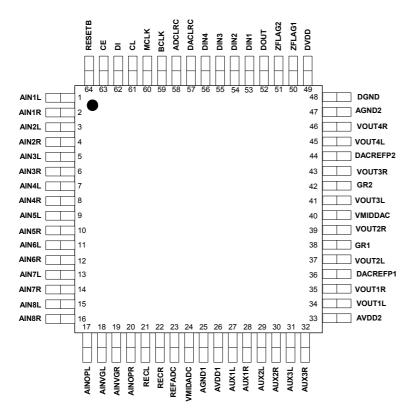

To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews

TABLE OF CONTENTS

DESCRIPTION	1
FEATURES	1
APPLICATIONS	1
BLOCK DIAGRAM	1
TABLE OF CONTENTS	2
PIN CONFIGURATION	
ORDERING INFORMATION	
PIN DESCRIPTION	-
ABSOLUTE MAXIMUM RATINGS	6
ELECTRICAL CHARACTERISTICS	
TERMINOLOGY	
MASTER CLOCK TIMING	
DIGITAL AUDIO INTERFACE – MASTER MODE	9
DIGITAL AUDIO INTERFACE – SLAVE MODE	
MPU INTERFACE TIMING	12
INTERNAL POWER ON RESET CIRCUIT	
DEVICE DESCRIPTION	
INTRODUCTION	
AUDIO DATA SAMPLING RATES	
ZERO DETECT	
DIGITAL AUDIO INTERFACE	
CONTROL INTERFACE OPERATION	
REGISTER MAP	
DIGITAL FILTER CHARACTERISTICS	
DAC FILTER RESPONSES.	
ADC FILTER RESPONSES	
ADC HIGH PASS FILTER	
DIGITAL DE-EMPHASIS CHARACTERISTICS	
APPLICATIONS INFORMATION	
RECOMMENDED EXTERNAL COMPONENTS	47
EXTERNAL CIRCUIT CONFIGURATION	48
PACKAGE DIMENSIONS	
IMPORTANT NOTICE	51
ADDRESS:	-
REVISION HISTORY	52

PIN CONFIGURATION

ORDERING INFORMATION

DEVICE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8770SIFT/V	-40°C to +85°C	64-lead TQFP (Pb-free)	MSL3	260°C
WM8770SIFT/RV	-40°C to +85°C	64-lead TQFP (tape and reel, Pb-free)	MSL3	260°C

Note:

Reel Quantity: 750

WM8770

PIN DESCRIPTION

PIN DES	PIN DESCRIPTION						
PIN	NAME	TYPE	DESCRIPTION				
1	AIN1L	Analogue Input	Channel 1 left input multiplexor virtual ground				
2	AIN1R	Analogue Input	Channel 1 right input multiplexor virtual ground				
3	AIN2L	Analogue Input	Channel 2 left input multiplexor virtual ground				
4	AIN2R	Analogue Input	Channel 2 right input multiplexor virtual ground				
5	AIN3L	Analogue Input	Channel 3 left input multiplexor virtual ground				
6	AIN3R	Analogue Input	Channel 3 right input multiplexor virtual ground				
7	AIN4L	Analogue Input	Channel 4 left input multiplexor virtual ground				
8	AIN4R	Analogue Input	Channel 4 right input multiplexor virtual ground				
9	AIN5L	Analogue Input	Channel 5 left input multiplexor virtual ground				
10	AIN5R	Analogue Input	Channel 5 right input multiplexor virtual ground				
11	AIN6L	Analogue Input	Channel 6 left input multiplexor virtual ground				
12	AIN6R	Analogue Input	Channel 6 right input multiplexor virtual ground				
13	AIN7L	Analogue Input	Channel 7 left input multiplexor virtual ground				
14	AIN7R	Analogue Input	Channel 7 right input multiplexor virtual ground				
15	AIN8L	Analogue Input	Channel 8 left input multiplexor virtual ground				
16	AIN8R	Analogue Input	Channel 8 right input multiplexor virtual ground				
17	AINOPL	Analogue Output	Left channel multiplexor output				
18	AINVGL	Analogue Input	Left channel multiplexor virtual ground				
19	AINVGR	Analogue Input	Right channel multiplexor virtual ground				
20	AINOPR	Analogue Output	Right channel multiplexor output				
20	RECL	Analogue Output	Left channel input mux select output				
21	RECR	Analogue Output	Right channel input mux select output				
22	REFADC	Analogue Output	ADC reference buffer decoupling pin; 10uF external decoupling				
23	VMIDADC	· · ·	ADC midrail divider decoupling pin; 10uF external decoupling				
24	AGND1	Analogue Output Supply	Analogue negative supply and substrate connection				
26	AVDD1	Supply	Analogue positive supply				
20	AUX1L	Analogue input	3.1 Multiplexor channel 1 left virtual ground input				
28	AUX1R	Analogue input	3.1 Multiplexor channel 1 right virtual ground input				
29	AUX2L	Analogue input	3.1 Multiplexor channel 2 left virtual ground input				
30	AUX2R	Analogue input	3.1 Multiplexor channel 2 right virtual ground input				
31	AUX3L	Analogue input	3.1 Multiplexor channel 3 left virtual ground input				
32	AUX3R	Analogue input	3.1 Multiplexor channel 3 right virtual ground input				
33	AVDD2	Supply	Analogue positive supply				
34	VOUT1L	Analogue output	DAC channel 1 left output				
35	VOUT1R	Analogue output	DAC channel 1 right output				
36	DACREFP1	Supply	DAC positive reference supply				
37	VOUT2L	Analogue output	DAC channel 2 left output				
38	GR1	Supply	DAC ground reference				
39	VOUT2R	Analogue output	DAC channel 2 right output				
40	VMIDDAC	Analogue output	DAC midrail decoupling pin ; 10uF external decoupling				
40	VOUT3L	Analogue output	DAC channel 3 left output				
42	GR2	Supply	DAC ground reference				
43	VOUT3R	Analogue output	DAC channel 3 right output				
44	DACREFP2	Supply	DAC positive reference supply				
45	VOUT4L	Analogue output	DAC channel 4 left output				
46	VOUT4R	Analogue output	DAC channel 4 right output				
47	AGND2	Supply	Analogue negative supply and substrate connection				
48	DGND	Supply	Digital negative supply				
49	DVDD	Supply	Digital positive supply				
50	ZFLAG1	Digital output	DAC Zero Flag output				
51	ZFLAG2	Digital output	DAC Zero Flag output				
	-						

PD, Rev 4.3, March 2011

Production Data

PIN	NAME	TYPE	DESCRIPTION
52	DOUT	Digital output	ADC data output
53	DIN1	Digital Input	DAC channel 1 data input
54	DIN2	Digital Input	DAC channel 2 data input
55	DIN3	Digital Input	DAC channel 3 data input
56	DIN4	Digital Input	DAC channel 4 data input
57	DACLRC	Digital input/output	DAC left/right word clock
58	ADCLRC	Digital input/output	ADC left/right word clock
59	BCLK	Digital input/output	ADC and DAC audio interface bit clock
60	MCLK	Digital input	Master DAC and ADC clock; 256, 384, 512 or 768fs (fs = word clock frequency)
61	CL	Digital input	Serial interface clock (5V tolerant)
62	DI	Digital input	Serial interface data (5V tolerant)
63	CE	Digital input	Serial interface Latch signal (5V tolerant)
64	RESETB	Digital input	Device reset input (mutes DAC outputs, resets gain stages to 0dB)
			(5V tolerant)

Note: Digital input pins have Schmitt trigger input buffers and are 5V tolerant.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag. MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag. MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Digital supply voltage	-0.3V	+3.63V
Analogue supply voltage	-0.3V	+7V
Voltage range digital inputs (DI, CL, CE & RESETB)	DGND -0.3V	+7V
Voltage range digital inputs (MCLK, DIN[3:0], ADCLRC, DACLRC & BCLK)	DGND -0.3V	DVDD + 0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD +0.3V
Master Clock Frequency		37MHz
Operating temperature range, T _A	-40°C	+85°C
Storage temperature	-65°C	+150°C

Note:

1. Analogue and digital grounds must always be within 0.3V of each other.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply range	DVDD		2.7		3.6	V
Analogue supply range	AVDD		2.7		5.5	V
Ground	AGND, DGND			0		V
Difference DGND to AGND			-0.3	0	+0.3	V

Note: digital supply DVDD must never be more than 0.3V greater than AVDD.

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital Logic Levels (TTL Levels)					-	
Input LOW level	VIL				0.8	V
Input HIGH level	VIH		2.0			V
Output LOW	V _{OL}	I _{OL} =1mA			0.1 x DVDD	V
Output HIGH	V _{OH}	I _{OH} -1mA	0.9 x DVDD			V
Analogue Reference Levels						
Reference voltage	V _{VMID}			AVDD/2		V
Potential divider resistance	R _{VMID}	AVDD to VMID and VMID to AGND		50k		Ω
DAC Performance (Load = $10k\Omega$,	50pF)					
0dBFs Full scale output voltage				1.0 x		Vrms
				AVDD/5		
SNR (Note 1,2)		A-weighted, @ fs = 48kHz	100	106		dB
SNR (Note 1,2)		A-weighted		106		dB
- (,/		@ fs = 96kHz				
Dynamic Range (Note 2)	DNR	A-weighted, -60dB full scale input	100	106		dB
Total Harmonic Distortion (THD)		1kHz, 0dBFs		-94	-88	dB
DAC channel separation				110		dB
DAC analogue Volume Gain Step Size				1		dB
DAC analogue Volume Gain Range		1kHz Input		0 to -100		dB
Output Noise		A-weighted output muted		-116		dB
DAC analogue Volume Mute Attenuation		1kHz Input, 0dB gain		100		dB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50		dB
		20Hz to 20kHz 100mVpp		45		dB
ADC Performance			1		1 1	
Input Signal Level (0dB)				1.0 x		Vrms
				AVDD/5		
SNR (Note 1,2)		A-weighted, 0dB gain @ fs = 48kHz		102		dB
SNR (Note 1,2)		A-weighted, 0dB gain		96		dB
		@ fs = 96kHz				30
Dynamic Range (note 2)		A-weighted, -60dB full scale input		102		dB
Total Harmonic Distortion (THD)		kHz, 0dBFs		-89	1	dB
		1kHz, -1dBFs		-94	-90	dB
ADC Channel Separation		1kHz Input		85		dB
Programmable Gain Step Size				1.0	+ +	dB
Programmable Gain Range		1kHz Input		-12 to +19	+ +	dB
Mute Attenuation		1kHz Input, 0dB gain		82	+ +	dB
Power Supply Rejection Ratio	PSRR			50	+	dB
Tower Supply Rejection Ratio	FURK	1kHz 100mVpp 20Hz to 20kHz 100mVpp		45		dB

PD, Rev 4.3, March 2011

WM8770

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, T_A = +25°C, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analogue input (AIN) to Analog	ue output (VOU	T) (Load=10kΩ, 50pF, g	ain = 0dB) B	ypass Mode		
0dB Full scale output voltage				1.0 x		Vrms
				AVDD/5		
SNR (Note 1)				104		dB
THD		1kHz, 0dB		-90		dB
		1kHz, -3dB		-95		dB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50		dB
		20Hz to 20kHz 100mVpp		45		dB
Mute Attenuation		1kHz, 0dB		100		dB
Supply Current		·				
Analogue supply current		AVDD = 5V		120		mA
Digital supply current		DVDD = 3.3V		16		mA

Notes:

1. Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured 'A' weighted.

- All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.
- 3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).

TERMINOLOGY

- 1. Signal-to-noise ratio (dB) SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
- 2. Dynamic range (dB) DNR is a measure of the difference between the highest and lowest portions of a signal. Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).
- 3. THD+N (dB) THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.
- 4. Stop band attenuation (dB) Is the degree to which the frequency spectrum is attenuated (outside audio band).
- 5. Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.
- 6. Pass-Band Ripple Any variation of the frequency response in the pass-band region.

MASTER CLOCK TIMING

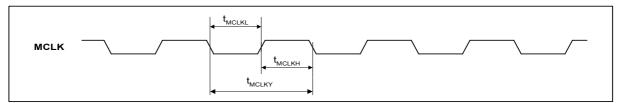


Figure 1 Master Clock Timing Requirements

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, T_A = +25°C, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
System Clock Timing Information						
MCLK System clock pulse width high	t _{MCLKH}		11			ns
MCLK System clock pulse width low	t _{MCLKL}		11			ns
MCLK System clock cycle time	t _{MCLKY}		28		1000	ns
MCLK Duty cycle			40:60		60:40	
Power-saving mode activated		After MCLK stopped	2		10	μs
Normal mode resumed		After MCLK re-started	0.5		1	MCLK
						cycle

Table 1 Master Clock Timing Requirements

Note: If MCLK period is longer than maximum specified above, DACs are powered down with internal digital audio filters being reset. In this mode, all registers will retain their values and can be accessed in the normal manner through the control interface. Once MCLK is restored, the DACs are automatically powered up.

DIGITAL AUDIO INTERFACE – MASTER MODE

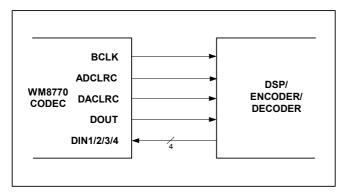
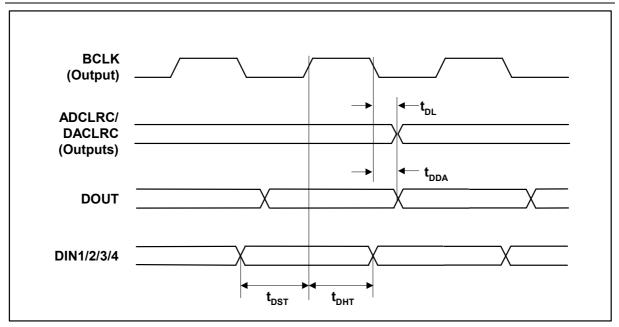
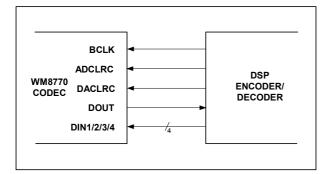



Figure 2 Audio Interface - Master Mode

WM8770

Figure 3 Digital Audio Data Timing – Master Mode

Test Conditions


AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT			
Audio Data Input Timing Inf	Audio Data Input Timing Information								
ADCLRC/DACLRC propagation delay from BCLK falling edge	t _{DL}		0		10	ns			
DOUT propagation delay from BCLK falling edge	t _{DDA}		0		10	ns			
DIN1/2/3/4 setup time to BCLCK rising edge	t _{DST}		10			ns			
DIN1/2/3/4 hold time from BCLK rising edge	t _{DHT}		10			ns			

Table 2 Digital Audio Data Timing – Master Mode

DIGITAL AUDIO INTERFACE – SLAVE MODE

Figure 4 Audio Interface – Slave Mode

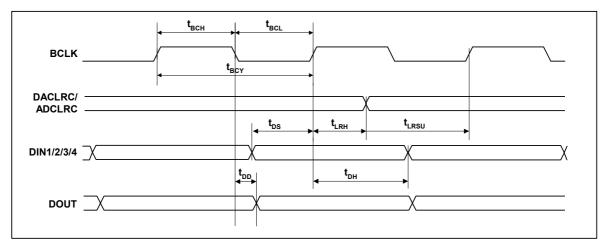


Figure 5 Digital Audio Data Timing – Slave Mode

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Audio Data Input Timing Information								
BCLK cycle time	t _{BCY}		80			ns		
BCLK pulse width high	t _{BCH}		20			ns		
BCLK pulse width low	t _{BCL}		20			ns		
DACLRC/ADCLRC set-up time to BCLK rising edge	t _{LRSU}		10			ns		
DACLRC/ADCLRC hold time from BCLK rising edge	t _{LRH}		10			ns		
DIN1/2/3/4 set-up time to BCLK rising edge	t _{DS}		10			ns		
DIN1/2/3/4 hold time from BCLK rising edge	t _{DH}		10			ns		
DOUT propagation delay from BCLK falling edge	t _{DD}		0		10	ns		

Table 3 Digital Audio Data Timing - Slave Mode

Note: ADCLRC and DACLRC should be synchronous with MCLK, although the WM8770 interface is tolerant of phase variations or jitter on these signals.

MPU INTERFACE TIMING

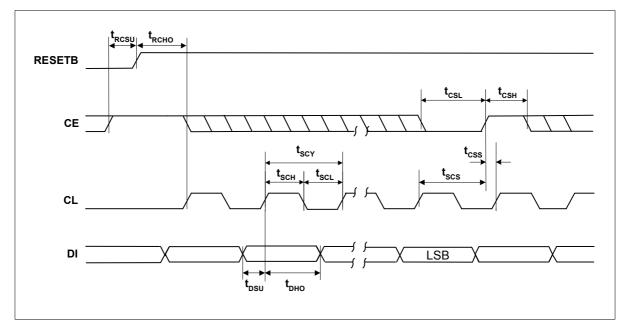


Figure 6 SPI Compatible Control Interface Input Timing

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
CE to RESETB hold time	t _{RCSU}	20			ns
RESETB to CL setup time	t _{RCHO}	20			ns
CL rising edge to CE rising edge	t _{scs}	60			ns
CL pulse cycle time	tscy	80			ns
CL pulse width low	t _{SCL}	30			ns
CL pulse width high	t _{SCH}	30			ns
DI to CL set-up time	t _{DSU}	20			ns
CL to DI hold time	t _{DHO}	20			ns
CE pulse width low	t _{CSL}	20			ns
CE pulse width high	t _{CSH}	20			ns
CE rising to CL rising	t _{css}	20			ns

Table 4 3 Wire SPI Compatible Control Interface Input Timing Information

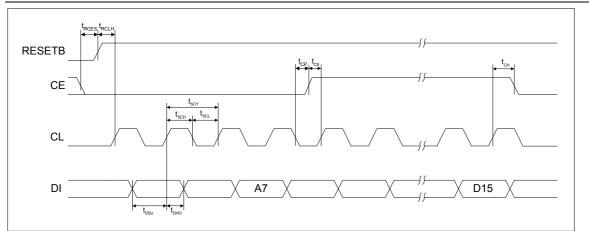


Figure 7 3 Wire CCB Compatible Interface Input Timing Information – CL Stopped Low

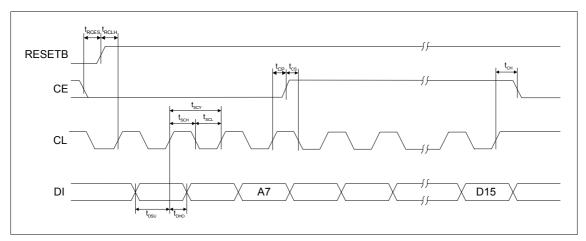


Figure 8 3 Wire CCB Compatible Interface Input Timing Information – CL Stopped High

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
CE to RESETB setup time	t _{RCES}	20			ns
RESETB to CL hold time	t _{RCLH}	20			ns
DI to CL setup time	t _{DSU}	20			ns
CL to DI hold time	t _{DHO}	20			ns
CL to CE setup time	t _{cs}	20			ns
CE to CL wait time	t _{CP}	20			ns
CL to CE hold time	t _{CH}	20			ns
CL pulse width high	t _{SCH}	30			ns
CL pulse width low	t _{SCL}	30			ns
CL pulse cycle time	t _{SCY}	80			ns

Table 5 3 wire CCB Compatible Interface Input Timing Information

INTERNAL POWER ON RESET CIRCUIT

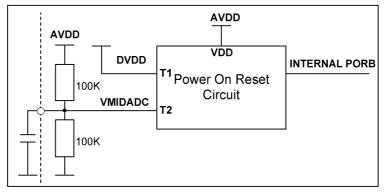


Figure 9 Internal Power On Reset Circuit Schematic

The WM8770 includes an internal Power On Reset Circuit which is used to reset the digital logic into a default state after power up.

Figure 9 shows a schematic of the internal POR circuit. The POR circuit is powered from AVDD. The circuit monitors DVDD and VMIDADC and asserts PORB low if DVDD or VMIDADC are below the minimum threshold Vpor_off.

On power up, the POR circuit requires AVDD to be present to operate. PORB is asserted low until AVDD, DVDD and VMIDADC are established. When AVDD, DVDD, and VMIDADC have been established, PORB is released high, all registers are in their default state and writes to the digital interface may take place.

On power down, PORB is asserted low whenever DVDD or VMIDADC drop below the minimum threshold Vpor_off.

If AVDD is removed at any time, the internal Power On Reset circuit is powered down and PORB will follow AVDD.

In most applications the time required for the device to release PORB high will be determined by the charge time of the VMIDADC node.

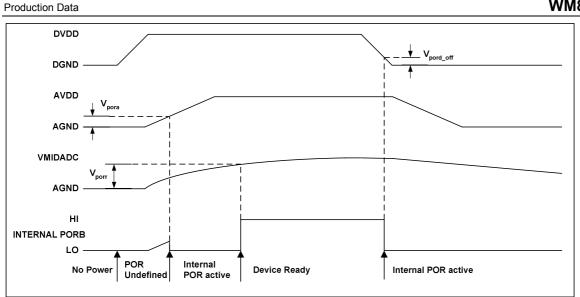


Figure 10 Typical Power up sequence where DVDD is powered before AVDD.

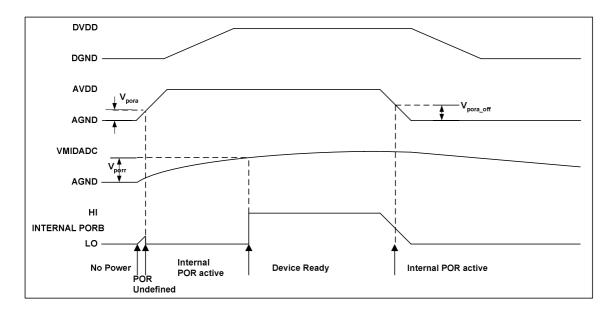


Figure 11 Typical Power up sequence where AVDD is powered before DVDD

SYMBOL	MIN	TYP	MAX	UNIT
V _{pora}	0.5	0.7	1.0	V
Vporr	0.5	0.7	1.1	V
V _{pora_off}	1.0	1.4	2.0	V
V _{pord_off}	0.6	0.8	1.0	V

Typical POR Operation (typical values, not tested)

In a real application the designer is unlikely to have control of the relative power up sequence of AVDD and DVDD. Using the POR circuit to monitor VMIDADC ensures a reasonable delay between applying power to the device and Device Ready.

Figure 10 and Figure 11 show typical power up scenarios in a real system. Both AVDD and DVDD must be established and VMIDADC must have reached the threshold Vporr before the device is ready and can be written to. Any writes to the device before Device Ready will be ignored.

Figure 10 shows DVDD powering up before AVDD. Figure 11 shows AVDD powering up before DVDD. In both cases, the time from applying power to Device Ready is dominated by the charge time of VMIDADC.

A 10uF cap is recommended for decoupling on VMIDADC. The charge time for VMIDADC will dominate the time required for the device to become ready after power is applied. The time required for VMIDADC to reach the threshold is a function of the VMIDADC resistor string and the decoupling capacitor. The Resistor string has a typical equivalent resistance of 50kohm (+/-20%). Assuming a 10uF capacitor, the time required for VMIDADC to reach threshold of 1V is approx 110ms.

DEVICE DESCRIPTION

INTRODUCTION

WM8770 is a complete 8-channel DAC, 2-channel ADC audio codec, including digital interpolation and decimation filters, multi-bit sigma delta stereo ADC, and switched capacitor multi-bit sigma delta DACs with analogue volume controls on each channel and output smoothing filters.

The device is implemented as four separate stereo DACs and a stereo ADC with flexible input multiplexor, in a single package and controlled by a single interface.

The four stereo channels may either be used to implement a 5.1 channel surround system, with additional stereo channel for a stereo mix down channel, or for a complete 7.1 channel surround system.

An analogue bypass path option is available, to allow stereo analogue signals from any of the 8 stereo inputs to be sent to the stereo outputs via the main volume controls. This allows a purely analogue input to analogue output high quality signal path to be implemented if required. This would allow, for example, the user to play back a 5.1 channel surround movie through 6 of the DACs, whilst playing back a separate analogue or digital signal into a remote room installation.

Each stereo DAC has its own data input DIN1/2/3/4. DAC word clock DACLRC is shared between them. The stereo ADC has it's own data output DOUT, and word clock ADCLRC. BITCLK and MCLK are shared between the ADCs and DACs. The Audio Interface may be configured to operate in either master or slave mode. In Slave mode ADCLRC, DACLRC and BCLK are all inputs. In Master mode ADCLRC, DACLRC and BCLK are all outputs.

The input multiplexor to the ADC is configured to allow large signal levels to be input to the ADC, using external resistors to reduce the amplitude of larger signals to within the normal operating range of the ADC. The ADC input PGA also allows input signals to be gained up to +19dB and attenuated down to -12dB. This allows the user maximum flexibility in the use of the ADC.

A selectable stereo record output is also provided on RECL/R. It is intended that the RECL/R outputs are only used to drive a high impedance buffer.

Each DAC has its own analogue and separate digital volume control. The analogue volume control is adjustable in 1dB steps and the digital volume control in 0.5dB steps. The analogue and digital volume controls may be operated independently. In addition a zero cross detect circuit is provided for each DAC for both analogue and digital volume controls. When analogue volume zero-cross detection is enabled the attenuation values are only updated when the input signal to the gain stage is close to the analogue ground level. The digital volume control detects a transition through the zero point before updating the volume. This minimises audible clicks and 'zipper' noise as the gain values change.

Additionally, 6 of the DAC outputs incorporate an input selector and mixer allowing an external 6 channel, or 5.1 channel signal, to be either switched into the signal path in place of the DAC signal or mixed with the DAC signal before the volume controls. This allows the device to be used as a 6 channel volume control for an externally provided 5.1 type analogue input. Use of external resistors allows larger input levels to be accepted by the device, giving maximum user flexibility.

Control of internal functionality of the device is by 3-wire serial control interface. An SPI or CCB type interface may used, selectable by the state of the CE pin on the rising edge of RESETB. The control interface may be asynchronous to the audio data interface as control data will be re-synchronised to the audio processing internally.

CE, CL, DI and RESETB are 5V tolerant with TTL input thresholds, allowing the WM8770 to used with DVDD = 3.3V and be controlled by a controller with 5V output.

Operation using system clock of 128fs, 192fs, 256fs, 384fs, 512fs or 768fs is provided. In Slave mode selection between clock rates is automatically controlled. In master mode the master clock to sample rate ratio is set by control bits ADCRATE and DACRATE. ADC and DAC may run at different rates within the constraint of a common master clock for the ADC and DACs. For example with master clock at 24.576MHz, a DAC sample rate of 96kHz (256fs mode) and an ADC sample rate of 48kHz (512fs mode) can be accomadated. Master clock.Sample rates (fs) from less than 8ks/s up to 192ks/s are allowed, provided the appropriate system clock is input.

The audio data interface supports right, left and $\mathsf{I}^2\mathsf{S}$ interface formats.

AUDIO DATA SAMPLING RATES

In a typical digital audio system there is only one central clock source producing a reference clock to which all audio data processing is synchronised. This clock is often referred to as the audio system's Master Clock. The external master system clock can be applied directly through the MCLK input pin with no software configuration necessary. In a system where there are a number of possible sources for the reference clock it is recommended that the clock source with the lowest jitter be used to optimise the performance of the ADC and DAC.

The master clock for WM8770 supports DAC and ADC audio sampling rates from 256fs to 768fs, where fs is the audio sampling frequency (DACLRC or ADCLRC) typically 32kHz, 44.1kHz, 48kHz or 96kHz (the DAC also supports operation at 128fs and 192fs and 192kHz sample rate). The master clock is used to operate the digital filters and the noise shaping circuits.

In Slave mode the WM8770 has a master detection circuit that automatically determines the relationship between the master clock frequency and the sampling rate (to within +/- 32 system clocks). If there is a greater than 32 clocks error the interface is disabled and maintains the output level at the last sample. The master clock must be synchronised with ADCLRC/DACLRC, although the WM8770 is tolerant of phase variations or jitter on this clock. Table 6 shows the typical master clock frequency inputs for the WM8770.

The signal processing for the WM8770 typically operates at an oversampling rate of 128fs for both ADC and DAC. The exception to this for the DAC is for operation with a 128/192fs system clock, e.g. for 192KHz operation where the oversampling rate is 64fs. For ADC operation at 96kHz it is recommended that the user set the ADCOSR bit. This changes the ADC signal processing oversample rate to 64fs.

SAMPLING	System Clock Frequency (MHz)							
RATE (DACLRC/	128fs	192fs	256fs	384fs	512fs	768fs		
ADCLRC)	DAC ONLY							
32kHz	4.096	6.144	8.192	12.288	16.384	24.576		
44.1kHz	5.6448	8.467	11.2896	16.9340	22.5792	33.8688		
48kHz	6.144	9.216	12.288	18.432	24.576	36.864		
96kHz	12.288	18.432	24.576	36.864	Unavailable	Unavailable		
192kHz	24.576	36.864	Unavailable	Unavailable	Unavailable	Unavailable		

Table 6 System Clock Frequencies Versus Sampling Rate

In Master mode BCLK, DACLRC and ADCLRC are generated by the WM8770. The frequencies of ADCLRC and DACLRC are set by setting the required ratio of MCLK to DACLRC and ADCLRC using the DACRATE and ADCRATE control bits (Table 7).

ADCRATE[2:0]/ DACRATE[2:0]	MCLK:ADCLRC/DACLRC RATIO
000	128fs (DAC Only)
001	192fs (DAC Only)
010	256fs
011	384fs
100	512fs
101	768fs

Table 7 Master Mode MCLK: ADCLRC/DACLRC Ratio Select

Table 8 shows the settings for ADCRATE and DACRATE for common sample rates and MCLK frequencies.

SAMPLING RATE	System Clock Frequency (MHz)								
(DACLRC/	128fs	192fs	256fs	384fs	512fs	768fs			
ADCLRC)	DACRATE =000	DACRATE =001	ADCRATE/ DACRATE =010	ADCRATE/ DACRATE =011	ADCRATE/ DACRATE =100	ADCRATE/ DACRATE =101			
32kHz	4.096	6.144	8.192	12.288	16.384	24.576			
44.1kHz	5.6448	8.467	11.2896	16.9340	22.5792	33.8688			
48kHz	6.144	9.216	12.288	18.432	24.576	36.864			
96kHz	12.288	18.432	24.576	36.864	Unavailable	Unavailable			
192kHz	24.576	36.864	Unavailable	Unavailable	Unavailable	Unavailable			

Table 8 Master Mode ADC/DACLRC Frequency Selection

BCLK is also generated by the WM8770. The frequency of BCLK depends on the mode of operation.

In 128/192fs modes (DACRATE=000 or 001) BCLK = MCLK/2. In 256/384/512fs modes (ADCRATE/DACRATE=010 or 011 or 100) BCLK = MCLK/4.

ZERO DETECT

The WM8770 has a zero detect circuit for each DAC channel which detects when 1024 consecutive zero samples have been input. Two zero flag outputs (ZFLAG1 and ZFLAG2) may be programmed to output the zero detect signals (see Table 9) which may then be used to control external muting circuits. A '1' on ZFLAG1 or ZFLAG2 indicates a zero detect. When a DAC is powered down ZFLAG1 and ZFLAG2 will go high by default if the Zero Detect is selected for that DAC. When this DAC is powered off, the Bypass path is selected and there is an external mute circuit controlled by ZFLAG1 or ZFLAG2, the Zero Detect feature should be de-selected or the output will be muted.

The zero detect may also be used to automatically enable the PGA mute by setting IZD. The zero flag output may be disabled by setting DZFM to 0000. The zero flag signal for a DAC channel will only be enabled if that channel is enabled as an input to the output summing stage.

DZFM[3:0]	ZFLAG1	ZFLAG2
0000	Zero flag disabled	Zero flag disabled
0001	All channels zero	All channels zero
0010	Left channels zero	Right channels zero
0011	Channel 1 zero	Channels 2-4 zero
0100	Channel 1 zero	Channel 2 zero
0101	Channel 1 zero	Channel 3 zero
0110	Channel 1 zero	Channel 4 zero
0111	Channel 2 zero	Channel 3 zero
1000	Channel 2 zero	Channel 4 zero
1001	Channel 3 zero	Channel 4 zero
1010	Channels 1-3 zero	Channel 4 zero
1011	Channel 1 zero	Channels 2 & 3 zero
1100	Channel 1 left zero	Channel 1 right zero
1101	Channel 2 left zero	Channel 2 right zero
1110	Channel 3 left zero	Channel 3 right zero
1111	Channel 4 left zero	Channel 4 right zero

Table 9 Zero Flag Output Select

POWERDOWN MODES

The WM8770 has powerdown control bits allowing specific parts of the WM8770 to be powered off when not being used. The 8-channel input source selector and input buffer may be powered down using control bit AINPD. When AINPD is set all inputs to the source selector (AIN1I/R to AIN8L/R) are switched to a buffered VMIDADC. Control bit ADCPD powers off the ADC and also the ADC input PGAs. The four stereo DACs each have a separate powerdown control bit, DACPD[3:0] allowing individual steteo DACs to be powered off when not in use. The analogue output mixers and EVRs may also be powered down by setting OUTPD[3:0]. OUTPD[3:0] also switches the analogue outputs VOUTL/R to VMIDDAC to maintain a dc level on the output. Setting AINPD, ADCPD, DACPD[3:0] and OUTPD[3:0] will powerdown everything except the references VMIDADC, ADCREF and VMIDDAC. These may be powered down by setting PDWN. Setting PDWN will override all other powerdown control bits. It is recommended that the 8-channel input mux and buffer, ADC, DAC and output mixers and EVRs are powered down before setting PDWN. The default is for all powerdown bits to be set except PDWN.

The Powerdown control bits allow parts of the device to be powered down when not in use. For example, if only an analogue bypass path from AINL/R to VOUTL/R is required the ADCPD and DACPD[3:0] control bits may be set leaving the analogue input and analogue output powered up.

DIGITAL AUDIO INTERFACE

MASTER AND SLAVE MODES

The audio interface operates in either Slave or Master mode, selectable using the MS control bit. In both Master and Slave modes DACDAT is always an input to the WM8770 and ADCDAT is always an output. The default is Slave mode.

In Slave mode (MS=0) ADCLRC, DACLRC and BCLK are inputs to the WM8770 (Figure 12). DIN1/2/3/4, ADCLRC and DACLRC are sampled by the WM8770 on the rising edge of BCLK. ADC data is output on DOUT and changes on the falling edge of BCLK. By setting control bit BCLKINV the polarity of BCLK may be reversed so that DIN1/2/3/4, ADCLRC and DACLRC are sampled on the falling edge of BCLK and DOUT changes on the rising edge of BCLK.

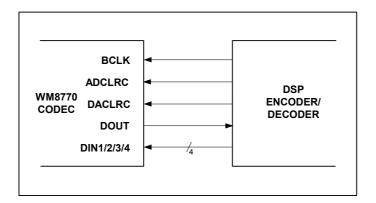
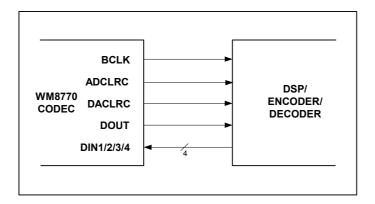



Figure 12 Slave Mode

In Master mode (MS=1) ADCLRC, DACLRC and BCLK are outputs from the WM8770 (Figure 13). ADCLRC, DACLRC and BITCLK are generated by the WM8770. DIN1/2/3/4 are sampled by the WM8770 on the rising edge of BCLK so the controller must output DAC data that changes on the falling edge of BCLK. ADCDAT is output on DOUT and changes on the falling edge of BCLK. By setting control bit BCLKINV the polarity of BCLK may be reversed so that DIN1/2/3/4 are sampled on the falling edge of BCLK and DOUT changes on the rising edge of BCLK.

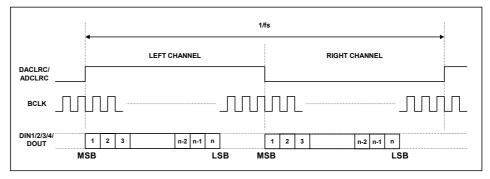
Figure 13 Master Mode

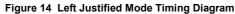
AUDIO INTERFACE FORMATS

Audio data is applied to the internal DAC filters, or output from the ADC filters, via the Digital Audio Interface. 3 popular interface formats are supported:

- Left Justified mode
- Right Justified mode
- I²S mode

All 3 formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the exception of 32 bit right justified mode, which is not supported.


In left justified, right justified and I²S modes, the digital audio interface receives DAC data on the DIN1/2/3/4 inputs and outputs ADC data on DOUT. Audio Data for each stereo channel is time multiplexed with ADCLRC/DACLRC indicating whether the left or right channel is present. ADCLRC/DACLRC is also used as a timing reference to indicate the beginning or end of the data words.


In left justified, right justified and I²S modes, the minimum number of BCLKs per DACLRC/ADCLRC period is 2 times the selected word length. ADCLRC/DACLRC must be high for a minimum of word length BCLKs and low for a minimum of word length BCLKs. Any mark to space ratio on ADCLRC/DACLRC is acceptable provided the above requirements are met.

LEFT JUSTIFIED MODE

In left justified mode, the MSB of DIN1/2/3/4 is sampled by the WM8770 on the first rising edge of BCLK following a DACLRC transition. The MSB of the ADC data is output on DOUT and changes on the same falling edge of BCLK as ADCLRC and may be sampled on the rising edge of BCLK. ADCLRC and DACLRC are high during the left samples and low during the right samples (Figure 14).

RIGHT JUSTIFIED MODE

In right justified mode, the LSB of DIN1/2/3/4 is sampled by the WM8770 on the rising edge of BCLK preceding a DACLRC transition. The LSB of the ADC data is output on DOUT and changes on the falling edge of BCLK preceding a ADCLRC transition and may be sampled on the rising edge of BCLK. ADCLRC and DACLRC are high during the left samples and low during the right samples (Figure 15).

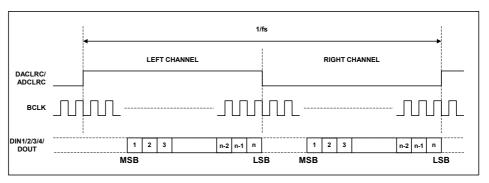


Figure 15 Right Justified Mode Timing Diagram

I²S MODE

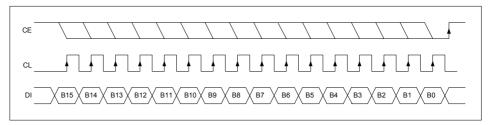
In I^2 S mode, the MSB of DIN1/2/3/4 is sampled by the WM8770 on the second rising edge of BCLK following a DACLRC transition. The MSB of the ADC data is output on DOUT and changes on the first falling edge of BCLK following an ADCLRC transition and may be sampled on the rising edge of BCLK. ADCLRC and DACLRC are low during the left samples and high during the right samples.



Figure 16 I²S Mode Timing Diagram

CONTROL INTERFACE OPERATION

The WM8770 is controlled using a 3-wire serial interface in either an SPI compatible configuration or a CCB (Computer Control Bus) configuration.


The interface configuration is determined by the state of the CE pin on the rising edge of the RESETB pin. If the CE pin is low on the rising edge of RESETB, CCB configuration is selected. If CE is high on the rising edge of RESETB, SPI compatible configuration is selected.

The control interface is 5V tolerant, meaning that the control interface input signals CE, CL and DI may have an input high level of 5V while DVDD is 3V. Input thresholds are determined by DVDD. RESETB is also 5V tolerant.

3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE

DI is used for the program data, CL is used to clock in the program data and CE is used to latch the program data. DI is sampled on the rising edge of CL. The 3-wire interface protocol is shown in Figure 17.

Figure 17 3-wire SPI compatible Interface

- 1. B[15:9] are Control Address Bits
- 2. B[8:0] are Control Data Bits
- 3. CE is edge sensitive the data is latched on the rising edge of CE.

CCB INTERFACE MODE

CCB Interface mode allows multiple devices to be controlled off a common 3-wire bus. Each device on the 3-wire bus has its own identifying address. The WM8770 supports write only CCB interface mode.

DI is used for the device address and program data and CL is used to clock in the address and data on DI. DI is sampled on the rising edge of CL. CE indicates whether the data on DI is the device address or program data. The eight clocks before a rising edge on CE will clock in the device address. The device address is latched on the rising edge of CE. The sixteen clocks before a falling edge on CE will clock in the program data. The program data is latched on the falling edge of CE.

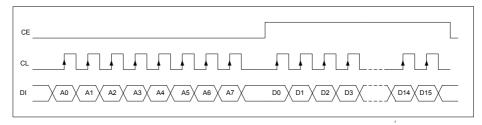
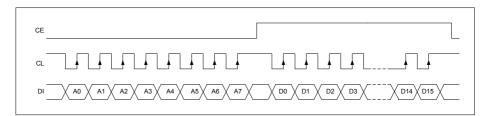



Figure 18 CCB Interface – CL stopped low

Figure 19 CCB Interface - CL stopped high

- 1. A[7:0] are Device Address bits
- 2. D[15:9] are Control Address bits
- 3. D[8:0] are Control Data bits

The address A[7:0] for WM8770 is 8Ch (10001100).

CONTROL INTERFACE REGISTERS

DIGITAL AUDIO INTERFACE CONTROL REGISTER

Interface format is selected via the FMT[1:0] register bits:

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10110	1:0	FMT[1:0]	10	Interface format Select
Interface Control				00 : right justified mode
				01: left justified mode
				10: I ² S mode
				11: Reserved

In left justified, right justified or I²S modes, the LRP register bit controls the polarity of ADCLRC/DACLRC. If this bit is set high, the expected polarity of ADCLRC/DACLRC will be the opposite of that shown Figure 14, Figure 15 and Figure 16. Note that if this feature is used as a means of swapping the left and right channels, a 1 sample phase difference will be introduced.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10110	2	LRP	0	ADCLRC/DACLRC Polarity (normal)
Interface Control				0 : normal ADCLRC/DACLRC polarity 1: inverted ADCLRC/DACLRC polarity

By default, ADCLRC/DACLRC and DIN1/2/3/4 are sampled on the rising edge of BCLK and should ideally change on the falling edge. Data sources that change ADCLRC/DACLRC and DIN1/2/3/4 on the rising edge of BCLK can be supported by setting the BCP register bit. Setting BCP to 1 inverts the polarity of BCLK to the inverse of that shown in Figure 14, Figure 15, Figure 16, , , and .

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10110	3	BCP	0	BCLK Polarity
Interface Control				0 : normal BCLK polarity
				1: inverted BCLK polarity

The IWL[1:0] bits are used to control the input word length.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10110	5:4	WL[1:0]	10	Input Word Length
Interface Control				00 : 16 bit data
				01: 20 bit data
				10: 24 bit data
				11: 32 bit data

Note: If 32-bit mode is selected in right justified mode, the WM8770 defaults to 24 bits.

In all modes, the data is signed 2's complement. The digital filters always input 24-bit data. If the DAC is programmed to receive 16 or 20 bit data, the WM8770 pads the unused LSBs with zeros. If the DAC is programmed into 32 bit mode, the 8 LSBs are ignored.

Note: In 24 bit I²S mode, any width of 24 bits or less is supported provided that ADCLRC/DACLRC is high for a minimum of 24 BCLKs and low for a minimum of 24 BCLKs.

A number of options are available to control how data from the Digital Audio Interface is applied to the DAC channels.

Control bit MS selects between audio interface Master and Slave Modes. In Master mode ADCLRC, DACLRC and BCLK are outputs and are generated by the WM8770. In Slave mode ADCLRC, DACLRC and BCLK are inputs to WM8770.

