imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Stereo CODEC with Speaker Driver

DESCRIPTION

The WM8978 is a low power, high quality stereo CODEC designed for portable applications such as multimedia phone, digital still camera or digital camcorder.

The device integrates preamps for stereo differential mics, and includes drivers for speakers, headphone and differential or stereo line output. External component requirements are reduced as no separate microphone or headphone amplifiers are required.

Advanced on-chip digital signal processing includes a 5-band equaliser, a mixed signal Automatic Level Control for the microphone or line input through the ADC as well as a purely digital limiter function for record or playback. Additional digital filtering options are available in the ADC path, to cater for application filtering such as 'wind noise reduction'.

The WM8978 digital audio interface can operate as a master or a slave. An internal PLL can generate all required audio clocks for the CODEC from common reference clock frequencies, such as 12MHz and 13MHz.

The WM8978 operates at analogue supply voltages from 2.5V to 3.3V, although the digital core can operate at voltages down to 1.71V to save power. The speaker outputs and OUT3/4 line outputs can run from a 5V supply if increased output power is required. Individual sections of the chip can also be powered down under software control.

FEATURES

Stereo CODEC:

- DAC SNR 98dB, THD -84dB ('A' weighted @ 48kHz)
- ADC SNR 95dB, THD -84dB ('A' weighted @ 48kHz)
- On-chip Headphone Driver with 'capless' option
 40mW per channel into 16Ω / 3.3V SPKVDD
- 1W output power into 8Ω BTL speaker / 5V SPKVDD - Capable of driving piezo speakers
 - Stereo speaker drive configuration

Mic Preamps:

- Stereo Differential or mono microphone Interfaces
 - Programmable preamp gain
 - Psuedo differential inputs with common mode rejection
 - Programmable ALC / Noise Gate in ADC path
- Low-noise bias supplied for electret microphones

Other Features:

- Enhanced 3-D function for improved stereo separation
- Digital playback limiter
- 5-band Equaliser (record or playback)
- Programmable ADC High Pass Filter (wind noise reduction)
- Programmable ADC Notch Filter
- Aux inputs for stereo analogue input signals or 'beep'
- On-chip PLL supporting 12, 13, 19.2MHz and other clocks
- Support for 8, 11.025, 12, 16, 22.05, 24, 32, 44.1 and 48kHz sample rates
- Low power, low voltage - 2.5V to 3.6V (digital: 1.71V to 3.6V)
- 5x5mm 32-lead QFN package

APPLICATIONS

- Stereo Camcorder or DSC
- Multimedia Phone

WOLFSON MICROELECTRONICS plc

To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews

BLOCK DIAGRAM

Production Data, October 2011, Rev 4.5

TABLE OF CONTENTS

DESCRIPTION	1
BLOCK DIAGRAM	1
FEATURES	1
APPLICATIONS	1
TABLE OF CONTENTS	2
	ייי ע
	די א
	4
	כ
	6
RECOMMENDED OPERATING CONDITIONS	6
ELECTRICAL CHARACTERISTICS	7
	. 10
SPEAKER OUTPUT THD VERSUS POWER	11
POWER CONSUMPTION	12
AUDIO PATHS OVERVIEW	14
SIGNAL TIMING REQUIREMENTS	15
SYSTEM CLOCK TIMING	. 15
AUDIO INTERFACE TIMING – MASTER MODE	. 15
AUDIO INTERFACE TIMING – SLAVE MODE	. 16
CONTROL INTERFACE TIMING – 3-WIRE MODE	. 17
CONTROL INTERFACE TIMING – 2-WIRE MODE	. 18
INTERNAL POWER ON RESET CIRCUIT	19
DEVICE DESCRIPTION	21
INTRODUCTION	.21
	. – .
INPUT SIGNAL PATH	.23
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC)	. 23 . 30
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC)	. 23 . 30 . 36
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH	23 30 36 47
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT	. 23 . 30 . 36 . 47 . 54
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES	23 30 36 47 54 54
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES	. 23 . 30 . 36 . 47 . 54 . 54 . 54 . 70
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES	23 30 36 47 54 54 70 75
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL)	23 30 36 47 54 54 54 70 75 75
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK COMPANDING	23 30 36 47 54 54 54 70 75 75 77
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK COMPANDING GENERAL PURPOSE INPUT/OUTPUT	23 30 47 54 54 70 75 75 77 77
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK COMPANDING GENERAL PURPOSE INPUT/OUTPUT OUTPUT SWITCHING (JACK DETECT).	.23 .30 .36 .47 .54 .54 .70 .75 .75 .75 .77 .77 .79 .80
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK COMPANDING GENERAL PURPOSE INPUT/OUTPUT OUTPUT SWITCHING (JACK DETECT) CONTROL INTERFACE	23 .30 .36 .47 .54 .54 .70 .75 .75 .77 .77 .79 .80 .82
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT. ANALOGUE OUTPUTS. DIGITAL AUDIO INTERFACES. AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK. COMPANDING. GENERAL PURPOSE INPUT/OUTPUT. OUTPUT SWITCHING (JACK DETECT). CONTROL INTERFACE. RESETTING THE CHIP.	23 .30 .36 .47 .54 .54 .70 .75 .75 .77 .77 .79 .80 .82 .83
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC). OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT. ANALOGUE OUTPUTS. DIGITAL AUDIO INTERFACES. AUDIO SAMPLE RATES. MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK. COMPANDING. GENERAL PURPOSE INPUT/OUTPUT. OUTPUT SWITCHING (JACK DETECT). CONTROL INTERFACE. RESETTING THE CHIP POWER SUPPLIES.	23 .30 .36 .47 .54 .54 .70 .75 .75 .77 .77 .80 .82 .83 .83
INPUT SIGNAL PATH	23 .30 .36 .47 .54 .54 .70 .75 .75 .77 .77 .79 .80 .82 .83 .83 .83
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS. DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK COMPANDING GENERAL PURPOSE INPUT/OUTPUT. OUTPUT SWITCHING (JACK DETECT) CONTROL INTERFACE RESETTING THE CHIP POWER SUPPLIES. RECOMMENDED POWER UP/DOWN SEQUENCE POWER MANAGEMENT	23 .30 .36 .47 .54 .54 .70 .75 .75 .77 .77 .77 .80 .83 .83 .83 .83
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK COMPANDING GENERAL PURPOSE INPUT/OUTPUT OUTPUT SWITCHING (JACK DETECT). CONTROL INTERFACE RESETTING THE CHIP POWER SUPPLIES RECOMMENDED POWER UP/DOWN SEQUENCE POWER MANAGEMENT REGISTER MAP	23 30 36 47 54 54 54 70 75 75 77 77 80 82 83 83 83 88 88 88
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK COMPANDING GENERAL PURPOSE INPUT/OUTPUT OUTPUT SWITCHING (JACK DETECT) CONTROL INTERFACE RESETTING THE CHIP POWER SUPPLIES RECOMMENDED POWER UP/DOWN SEQUENCE POWER MANAGEMENT REGISTER MAP REGISTER MAP	23 30 .36 .47 .54 .54 .75 .75 .75 .77 .77 .80 .82 .83 .83 .83 .83 .88 .83
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC). OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT. ANALOGUE OUTPUTS DIGITAL AUDIO INTERFACES AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK. COMPANDING GENERAL PURPOSE INPUT/OUTPUT. OUTPUT SWITCHING (JACK DETECT). CONTROL INTERFACE RESETTING THE CHIP POWER SUPPLIES. RECOMMENDED POWER UP/DOWN SEQUENCE. POWER MANAGEMENT REGISTER MAP REGISTER BITS BY ADDRESS DIGITAL FILTER CHARACTERISTICS	23 30 .36 .47 .54 .70 .75 .77 .77 .77 .80 .82 .83 .83 .83 .83 .83 .88 .91
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT. ANALOGUE OUTPUTS. DIGITAL AUDIO INTERFACES. AUDIO SAMPLE RATES. MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK. COMPANDING GENERAL PURPOSE INPUT/OUTPUT. OUTPUT SWITCHING (JACK DETECT). CONTROL INTERFACE. RESETTING THE CHIP POWER SUPPLIES. RECOMMENDED POWER UP/DOWN SEQUENCE. POWER MANAGEMENT REGISTER MAP . REGISTER MAP. REGISTER BITS BY ADDRESS DIGITAL FILTER CHARACTERISTICS	23 .30 .36 .47 .54 .70 .75 .77 .77 .77 .77 .80 .82 .83 .83 .83 .83 .88 .83 .88 .91
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS. DIGITAL AUDIO INTERFACES. AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK. COMPANDING. GENERAL PURPOSE INPUT/OUTPUT OUTPUT SWITCHING (JACK DETECT) CONTROL INTERFACE. RESETTING THE CHIP POWER SUPPLIES. RECOMMENDED POWER UP/DOWN SEQUENCE. POWER MANAGEMENT REGISTER MAP. REGISTER BITS BY ADDRESS. DIGITAL FILTER CHARACTERISTICS	23 .30 .36 .47 .54 .54 .70 .75 .75 .77 .77 .77 .77 .80 .82 .83 .83 .83 .83 .83 .88 .83 .83 .83 .83
INPUT SIGNAL PATH ANALOGUE TO DIGITAL CONVERTER (ADC) INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) OUTPUT SIGNAL PATH 3D STEREO ENHANCEMENT ANALOGUE OUTPUTS. DIGITAL AUDIO INTERFACES. AUDIO SAMPLE RATES MASTER CLOCK AND PHASE LOCKED LOOP (PLL) LOOPBACK. COMPANDING. GENERAL PURPOSE INPUT/OUTPUT OUTPUT SWITCHING (JACK DETECT) CONTROL INTERFACE. RESETTING THE CHIP POWER SUPPLIES. RECOMMENDED POWER UP/DOWN SEQUENCE. POWER MANAGEMENT REGISTER MAP REGISTER BITS BY ADDRESS. DIGITAL FILTER CHARACTERISTICS	23 .30 .36 .47 .54 .54 .75 .75 .77 .77 .77 .80 .82 .83 .83 .83 .83 .83 .83 .83 .91

PD, Rev 4.5, October 2011

Production Data	WM
5-BAND EQUALISER	
APPLICATION INFORMATION	
RECOMMENDED EXTERNAL COMPONENTS	
PACKAGE DIAGRAM	
IMPORTANT NOTICE	
ADDRESS	
REVISION HISTORY	

PIN CONFIGURATION

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8978CGEFL/V	-40°C to +100°C	32-lead QFN (5 x 5 mm) (Pb-free)	MSL3	260°C
WM8978CGEFL/RV	-40°C to +100°C	32-lead QFN (5 x 5 mm) (Pb-free, tape and reel)	MSL3	260°C

Note:

Reel quantity = 3,500

PIN DESCRIPTION

PIN	NAME	TYPE	DESCRIPTION
1	LIP	Analogue input	Left Mic Pre-amp positive input
2	LIN	Analogue input	Left Mic Pre-amp negative input
3	L2/GPIO2	Analogue input	Left channel line input/secondary mic pre-amp positive input/GPIO2 pin
4	RIP	Analogue input	Right Mic Pre-amp positive input
5	RIN	Analogue input	Right Mic Pre-amp negative input
6	R2/GPIO3	Analogue input	Right channel line input/secondary mic pre-amp positive input/GPIO3 pin
7	LRC	Digital Input / Output	DAC and ADC Sample Rate Clock
8	BCLK	Digital Input / Output	Digital Audio Port Clock
9	ADCDAT	Digital Output	ADC Digital Audio Data Output
10	DACDAT	Digital Input	DAC Digital Audio Data Input
11	MCLK	Digital Input	Master Clock Input
12	DGND	Supply	Digital ground
13	DCVDD	Supply	Digital core logic supply
14	DBVDD	Supply	Digital buffer (I/O) supply
15	CSB/GPIO1	Digital Input / Output	3-Wire Control Interface Chip Select / GPIO1 pin
16	SCLK	Digital Input	3-Wire Control Interface Clock Input / 2-Wire Control Interface Clock Input
17	SDIN	Digital Input / Output	3-Wire Control Interface Data Input / 2-Wire Control Interface Data Input
18	MODE	Digital Input	Control Interface Selection
19	AUXL	Analogue input	Left Auxillary input
20	AUXR	Analogue input	Right Auxillary input
21	OUT4	Analogue Output	Buffered midrail Headphone pseudo-ground, or Right line output or MONO mix output
22	OUT3	Analogue Output	Buffered midrail Headphone pseudo-ground, or Left line output
23	ROUT2	Analogue Output	Second right output, or BTL speaker driver positive output
24	SPKGND	Supply	Speaker ground (feeds speaker amp and OUT3/OUT4)
25	LOUT2	Analogue Output	Second left output, or BTL speaker driver negative output
26	SPKVDD	Supply	Speaker supply (feed speaker amp only)
27	VMID	Reference	Decoupling for ADC and DAC reference voltage
28	AGND	Supply	Analogue ground (feeds ADC and DAC)
29	ROUT1	Analogue Output	Headphone or Line Output Right
30	LOUT1	Analogue Output	Headphone or Line Output Left
31	AVDD	Supply	Analogue supply (feeds ADC and DAC)
32	MICBIAS	Analogue Output	Microphone Bias

Note:

It is recommended that the QFN ground paddle should be connected to analogue ground on the application PCB. Refer to the application note WAN_0118 on "Guidelines on How to Use QFN Packages and Create Associated PCB Footprints".

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at $<30^{\circ}$ C / 85% Relative Humidity. Not normally stored in moisture barrier bag. MSL2 = out of bag storage for 1 year at $<30^{\circ}$ C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
DBVDD, DCVDD, AVDD supply voltages	-0.3V	+4.5V
SPKVDD supply voltage	-0.3V	+7V
Voltage range digital inputs	DGND -0.3V	DVDD +0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD +0.3V
Operating temperature range, T _A	-40°C	+100°C
Storage temperature after soldering	-65°C	+150°C

Notes:

1. Analogue and digital grounds must always be within 0.3V of each other.

2. All digital and analogue supplies are completely independent from each other.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
Digital supply range (Core)	DCVDD		1.71 ¹		3.6	V
Digital supply range (Buffer)	DBVDD		1.71 ²		3.6	V
Analogue core supply range	AVDD		2.5		3.6	V
Analogue output supply range	SPKVDD		2.5		5.5	V
Ground	DGND, AGND,			0		V
	SPKGND					

Notes:

1. When using the PLL, DCVDD must not be less than 1.9V.

- 2. DBVDD must be greater than or equal to DCVDD.
- 3. Analogue supplies have to be \geq to digital supplies.

4. In non-boosted mode, SPKVDD should = AVDD, if boosted SPKVDD should be \geq 1.5x AVDD.

ELECTRICAL CHARACTERISTICS

DCVDDP 1.8V, AVDD-DBVDDP 3.3V, T _A = 426°C, 1kHz signal, fs = 48Hz, 24-bit audio data uneles otherwise stated. PARAMETER MAX UNIT Microphone Preamp Inputs (LIP, LIN, RIP, RIN, LZ, R2) - <th>Test Conditions</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Test Conditions						
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT Microphone Preamp Inputs (LIP, LIN, RIP, RIN, L2, R2) TEST CONDITION MIN PGABOOST = 0dB 1.0 With Test Stand Level Note Oth 1) Note Stand Level Vires PGABOOST = 0dB 0 0 dBV Mic PGA equivalent input noise At 35 256B 0 to 20kHz 150 uV uV Input resistance Reccut Gain set to 35.256B 1.6 KΩ KΩ Reccut Gain set to 12dB 75 KΩ KΩ Reccut Gain set to 12dB 75 KΩ GB MIC Programmable Gain Amplitter (PGA) Maximum Programmable Gain 10 pF Minimum Programmable Gain Step Size Guaranteed monotonic 0.75 dB Programmable Gain Step Size Guaranteed monotonic 0.75 dB Misimum Gain from AUXLR or LR 200 E 20 dB LR2 input to boost/mixer Guaranteed monotonic 3 GB Gain step Size boost/mixer Guaran	DCVDD=1.8V, AVDD=DBVDD=SF	PKVDD= 3.3V,	Γ _A = +25°C, 1kHz signal, f	s = 48kHz, 2	24-bit audio data	unless other	wise stated.
Microphone Pream Inputs (LIP, LIN, RIN, RIN, L2, R2) Full-scale Input Signal Level note this changes in proportion to AVDD (Note 1) Vmes PGABOOST = 0dB 1.0 Wms Mic PGA equivalent input noise At 35.25dB 0 to 20kHz 150 UV Input resistance Racon Gain set to 35.25dB 1.6 KQ2 Racon Gain set to 12dB 75 KQ2 Racon Gain set to 12dB 75 KQ2 Racon Gain set to 12dB 75 KQ2 Racon LRIP2INPGA = 1 94 KQ2 Rocon Cacon 10 pF Minimum Programmable Gain LRIP2INPGA = 1 94 KQ2 Rocost on PGA Input E Guaranteed monotonic 0.75 dB Programmable Gain Step Size Guaranteed monotonic 0.75 dB Maximum Gain from AUXL/R or	PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Full-scale Input Signal Level note this changes in proportion to AVDD (Note 1)VmsPGABOOST = 0.dB1.0VmsMic PCA equivalent input noise and the properties R_{MCN} At 35.25dB0 to 20KHz150UVInput resistance R_{MCN} Gain set to 35.25dB1.6KΩ R_{MCN} Gain set to 12dB7.5KQ R_{MCN} Gain set to 12dB7.5KQRaconGain set to 12dB7.5KQRaconCasin set to 12dB7.5KQRaconLRIP2INPPGA = 19.4KQMic Programmable Gain Amplifier (PGA)	Microphone Preamp Inputs (LIP,	LIN, RIP, RIN,	L2, R2)				
note this changes in proportion to AVDD (Note 1) INPPGAVOL = 0dB 0 dBV Mic PGA equivalent input noise AI 35.25dB gain 0 to 20kHz gain 150 uV Input resistance Racon Gain set to 35.25dB 1.6 KΩ Racon KΩ Racon Gain set to 0dB 47 KΩ Racon Gain set to 12dB 75 KΩ Racon Gain set to 12dB 75 KΩ Racon Gain set to 12dB 75 KΩ Racon Cacon 10 pF Minimum Programmable Gain 35.25 dB MB Programmable Gain Step Size Guaranteed monotonic 0.75 dB Mute Attenuation 120 dB Boost disabled 0 dB Mute Attenuation on 120 dB Boost disabled 0 dB Mute Attenuation on 120 dB Boost disabled 0 dB Maximum Gain from AUXLR or L/R2 input to boost/mixer Gain set o AUXL, AUXL, AUXL, AUXL, AUXE, AUXE, AUXR, AUXE, AUXR, AUXR, AUXR, AUXR, AUXR, AUXR, AUXR, A	Full-scale Input Signal Level –	VINFS	PGABOOST = 0dB		1.0		Vrms
$\begin{tabular}{ c $	note this changes in proportion		INPPGAVOL = 0dB		0		dBV
Mic PAR equivalent input noise At 35.25ds gain D D ZMRI2 150 UV Input resistance $R_{MIC/M}$ Gain set to 35.25dB 1.6 $K\Omega$ RMIC/M Gain set to 0dB 47 $K\Omega$ RMIC/M Gain set to 012dB 75 $K\Omega$ RMIC/M Gain set to 12dB 75 $K\Omega$ Minimum Programmable Gain LIRIP2INPPGA = 1 94 $K\Omega$ Minimum Programmable Gain 35.25 dB Minimum Programmable Gain 0 10 pF Minimum Programmable Gain Sost (0+20dB) 120 dB Selectable Input Gain Boost (0+20dB) 0 dB Selectable Input Gain Sost (0+20dB) Boost disabled 0 dB Minimum Gain from AUXL/R or L/R2 input to boost/mixer Gauranteed monotonic 3 dB Minimum Gain from AUXL/R or L/R2 input to boost/mixer Gauranteed monotonic 3 dB Minimum Gain from AUXL/R or L/R2 input to boost/mixer Gauranteed monotonic 3 dB More 2 V_{MFS} Guaranteed monotonic 3	to AVDD (Note 1)		0.1.00111		450		
$\begin{tabular}{ c $	Mic PGA equivalent input hoise	At 35.250B	U to 20KHZ		150		uv
$\begin{tabular}{ c $	Input resistance	RMICIN	Gain set to 35 25dB		1.6		kO
$\begin{tabular}{ c c c c } \hline Product Automatical Amplifier (PGA) & Caline Set to 124B & 75 & KQ \\ \hline R_{MICP} & L/RIP2INPPGA = 1 & 94 & KQ \\ \hline C_{MICP} & L/RIP2INPPGA = 1 & 94 & KQ \\ \hline C_{MICP} & L/RIP2INPPGA = 1 & 94 & KQ \\ \hline C_{MICP} & L/RIP2INPPGA = 1 & 94 & KQ \\ \hline C_{MICM} & Caline & 10 & pF \\ \hline Maximum Programmable Gain Amplifier (PGA) & & & & & & & & & & & & & & & & & & &$		RMICIN	Gain set to 0dB		47		kQ
$\begin{tabular}{ c c c c c } \hline c c c c c c c c c c c c c c c c c c $		RMICIN	Gain set to -12dB		75		kQ
Total Part Part Part Part Part Part Part Part		RMICIR	I/RIP2INPPGA = 1		94		kO
MIC Programmable Gain Amplifier (PGA) Image: Constraint of the second sec					10		nF
Maximum Programmable GainImage: Maximum Programmable Gain35.25dBMinimum Programmable GainImage: Guaranteed monotonic0.75dBProgrammable Gain Step SizeGuaranteed monotonic0.75dBMute AttenuationImage: Guaranteed monotonic120dBSelectable Input Gain Boost (0/+20dB)Boost disabled0dBSelectable Input Gain Boost (0/+20dB)Boost disabled0dBMaximum Gain from AUXL/R or L/R2 input to boost/mixerBoost enabled20dBMinimum Gain from AUXL/R or L/R2 input to boost/mixerGuaranteed monotonic3dBMutilary Analogue Inputs (AUX-AUXR)Guaranteed monotonic3dBFull-scale Input Signal Level (OdB) - note this changes in proportion to AVDDVinFsAVDD/3.3 enabled, at max gainVrms dBVInput Resistance (Note 2)RAUXINILIMNLeft Input boost and mixer enabled, at max gain4.3kΩRAUXINILIMA beep enabled, at max gain38.1kΩRAUXINILIMA beep enabled, at max gain39.1kΩRAUXINILIMA beep enabled, at max gain3kΩRAUXINILIMA beep enabled, at max gain3kΩRAUXINILIMA beep enabled, at max gain34RAUXINILIMA beep enabled, at max gain34RAUXINILIMA beep enabled, at max gain34RAUXINILIMA beep enabled, at max gain34RAUXINILIMA beep enabled, at mix gain34RAUXINILIMA beep enabled,	MIC Programmable Gain Amplifi	er (PGA)			10		P1
Initiation Programmable Gain Image: Constraint of the second secon	Maximum Programmable Gain				35.25		dB
$\begin{tabular}{ c c c c c c } \hline \end{tabular}{c c c c c c c c c c c c c c c c c c c $	Minimum Programmable Gain				-12		dB
$\begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Programmable Gain Step Size		Guaranteed monotonic		0.75		dB
Belectable Input Gain Boost (0+20dB) Boost disabled 0 dB Gain Boost on PGA input Boost disabled 0 dB Maximum Gain from AUXL/R or L/R2 input to boost/mixer Boost enabled 20 dB Minimum Gain from AUXL/R or L/R2 input to boost/mixer -12 dB Gain step size to boost/mixer Guaranteed monotonic 3 dB Auxiliary Analogue Inputs (AUXL, AUXR) -12 dB Full-scale Input Signal Level (0dB) – note this changes in proportion to AVDD VINFS AVDD/3.3 0 Vrms dBV Input Resistance (Note 2) RAUXINELIMN Left Input boost and mixer enabled, at 0dB gain 4.3 kΩ RAUXINELTYP Left Input boost and mixer enabled, at max gain 39.1 kΩ RAUXINEMN RAUXINEMN Left Input boost and mixer enabled, at max gain 39.1 kΩ RAUXINEMN RAUXINEMN Right Input boost, mixer and beep enabled, at max gain 3 kΩ RAUXINEMN Right Input boost, mixer and beep enabled, at max gain 3 kΩ RAUXINEMN Right Input boost, mixer and beep enabled, at max gain 29 kΩ Input Capacitance C _{MICIN} Might Input boost, mixer and beep enabled, at min gain 29 kΩ	Mute Attenuation				120		dB
Gain Boost on PGA input Boost disabled 0 dB Maximum Gain from AUXL/R or L/R2 input to boost/mixer Image: Second	Selectable Input Gain Boost (0/+	20dB)					40
$\begin{array}{ c c c c c c } \hline left line boost distance & c & dB \\ \hline left line boost distance & c & dB \\ \hline left line boost distance & c & dB \\ \hline left line boost mixer & c & dB \\ \hline left line boost mixer & c & c & dB \\ \hline left line boost mixer & c & c & c & dB \\ \hline left line boost mixer & c & c & c & c & dB \\ \hline left line boost mixer & c & c & c & c & c & c & dB \\ \hline left line boost mixer & c & c & c & c & c & c & c & c & c & $	Gain Boost on PGA input		Boost disabled		0		dB
Maximum Gain from AUXL/R or L/R2 input to boost/mixerDecore of data of being of the second of			Boost enabled		20		dB
Minimum Gain from AUXL/R or L/R2 input to boost/mixerImage: Constant of the second s	Maximum Gain from AUXL/R or L/R2 input to boost/mixer				+6		dB
Gain step size to boost/mixer Guaranteed monotonic 3 dB Auxiliary Analogue Inputs (AUXL, AUXR) UNFS AVDD/3.3 Vrms Full-scale Input Signal Level (0dB) – note this changes in proportion to AVDD VINFS AVDD/3.3 Vrms Input Resistance (Note 2) RAUXINLMIN Left Input boost and mixer enabled, at max gain 4.3 KΩ RAUXINLTYP Left Input boost and mixer enabled, at max gain 8.6 KΩ RAUXINLMAX Left Input boost and mixer enabled, at mix gain 39.1 KΩ RAUXINLMAX Left Input boost, mixer and beep enabled, at mix gain 39.1 KΩ RAUXINRMIN Right Input boost, mixer and beep enabled, at 0dB gain 3 KΩ Input Capacitance C _{MICIN} Right Input boost, mixer and beep enabled, at min gain 3 KΩ	Minimum Gain from AUXL/R or L/R2 input to boost/mixer				-12		dB
Auxiliary Analogue Inputs (AUXL, AUXR) Vines AVDD/3.3 Vrms Full-scale Input Signal Level (0dB) – note this changes in proportion to AVDD Vines AVDD/3.3 Vrms Input Resistance (Note 2) RauxinLMIN Left Input boost and mixer enabled, at max gain 4.3 kΩ RauxinLTYP Left Input boost and mixer enabled, at max gain 8.6 kΩ RauxinLMIN Left Input boost and mixer enabled, at 0dB gain 39.1 kΩ RauxinLMAX Left Input boost, mixer and beep enabled, at max gain 39.1 kΩ RauxinRMIN Right Input boost, mixer and beep enabled, at 0dB gain 3 kΩ RauxinRMIN Right Input boost, mixer and beep enabled, at 0dB gain 3 kΩ Input Capacitance C _{MICIN} Sight Input boost, mixer and beep enabled, at min gain 6 kΩ	Gain step size to boost/mixer		Guaranteed monotonic		3		dB
Full-scale Input Signal Level (0dB) – note this changes in proportion to AVDD VINFS AVDD/3.3 0 Vrms dBV Input Resistance (Note 2) RAUXINLMIN Left Input boost and mixer enabled, at max gain 4.3 KΩ RAUXINLTYP Left Input boost and mixer enabled, at max gain 8.6 KΩ RAUXINLTYP Left Input boost and mixer enabled, at 0dB gain 39.1 KΩ RAUXINLMAX Left Input boost, mixer and beep enabled, at max gain 39.1 KΩ RAUXINRMIN Right Input boost, mixer and beep enabled, at 0dB gain 3 KΩ Input Capacitance C _{MICIN} Right Input boost, mixer and beep enabled, at min gain 5 KΩ	Auxiliary Analogue Inputs (AUXI	AUXR)					
(0dB) - note this changes in proportion to AVDDRauxinkminLeft Input boost and mixer enabled, at max gain0dBVInput Resistance (Note 2)RauxinkminLeft Input boost and mixer enabled, at max gain4.3kΩRauxinkTYPLeft Input boost and mixer enabled, at 0dB gain8.6kΩRauxinkTYPLeft Input boost and mixer enabled, at min gain39.1kΩRauxinkTYPRight Input boost, mixer and beep enabled, at min gain3kΩRauxinkTYPRight Input boost, mixer and beep enabled, at 0dB gain6kΩRauxinkTYPRight Input boost, mixer and beep enabled, at 0dB gain6kΩRauxinkTYPRight Input boost, mixer and beep enabled, at min gain29kΩInput CapacitanceC _{MICIN} Input boost, mixer and beep enabled, at min gain10pF	Full-scale Input Signal Level				AVDD/3.3		Vrms
proportion to AVDDImage: Constraint of the sector of the sec	(0dB) – note this changes in				0		dBV
Input Resistance (Note 2) RauxinLmin Left Input boost and mixer enabled, at max gain 4.3 kΩ RauxinLTYP Left Input boost and mixer enabled, at 0dB gain 8.6 kΩ RauxinLMAX Left Input boost and mixer enabled, at 0dB gain 39.1 kΩ RauxinRMIN Right Input boost, mixer and beep enabled, at max gain 39.1 kΩ RauxinRMIN Right Input boost, mixer and beep enabled, at 0dB gain 3 kΩ RauxinRMIN Right Input boost, mixer and beep enabled, at 0dB gain 6 kΩ RauxinRMAX Right Input boost, mixer and beep enabled, at 0dB gain 6 kΩ Input Capacitance C _{MICIN} Sight Input boost, mixer and beep enabled, at min gain 29 kΩ	proportion to AVDD						
RAUXINLTYP Left Input boost and mixer enabled, at 0dB gain 8.6 kΩ RAUXINLMAX Left Input boost and mixer enabled, at min gain 39.1 kΩ RAUXINRMIN Right Input boost, mixer and beep enabled, at max gain 33.1 kΩ RAUXINRMIN Right Input boost, mixer and beep enabled, at max gain 3 kΩ RAUXINRMIN Right Input boost, mixer and beep enabled, at 0dB gain 6 kΩ RAUXINRMAX Right Input boost, mixer and beep enabled, at 0dB gain 6 kΩ Input Capacitance C _{MICIN} Imput boost, mixer and beep enabled, at min gain 10 pF	Input Resistance (Note 2)	R _{AUXINLMIN}	Left Input boost and mixer enabled, at max gain		4.3		kΩ
R _{AUXINLMAX} Left Input boost and mixer enabled, at min gain 39.1 kΩ R _{AUXINRMIN} Right Input boost, mixer and beep enabled, at max gain 3 kΩ R _{AUXINRMIN} Right Input boost, mixer and beep enabled, at max gain 3 kΩ R _{AUXINRMIN} Right Input boost, mixer and beep enabled, at 0dB gain 6 kΩ R _{AUXINRMAX} Right Input boost, mixer and beep enabled, at 0dB gain 29 kΩ Input Capacitance C _{MICIN} 10 pF		RAUXINLTYP	Left Input boost and mixer enabled, at 0dB gain		8.6		kΩ
RauxinRMIN Right Input boost, mixer and beep enabled, at max gain 3 kΩ RAUXINRTYP Right Input boost, mixer and beep enabled, at max gain 6 kΩ RAUXINRTYP Right Input boost, mixer and beep enabled, at 0dB gain 6 kΩ RAUXINRMAX Right Input boost, mixer and beep enabled, at 0dB gain 6 kΩ Input Capacitance C _{MICIN} Input Capacitance 10 pF		R _{AUXINLMAX}	Left Input boost and mixer enabled, at min gain		39.1		kΩ
R _{AUXINRTYP} Right Input boost, mixer and beep enabled, at 0dB gain 6 kΩ R _{AUXINRMAX} Right Input boost, mixer and beep enabled, at 0dB gain 29 kΩ Input Capacitance C _{MICIN} Image: Complexity of the second sec		RAUXINRMIN	Right Input boost, mixer and beep enabled, at max gain		3		kΩ
RauxinRmax Right Input boost, mixer and beep enabled, at min gain 29 kΩ Input Capacitance C _{MICIN} Input Capacitance 10 pF		RAUXINRTYP	Right Input boost, mixer and beep enabled, at 0dB gain		6		kΩ
Input Capacitance C _{MICIN} 10 pF		RAUXINRMAX	Right Input boost, mixer and beep enabled, at min gain		29		kΩ
	Input Capacitance	C _{MICIN}	Stop strates, at this guilt		10		pF

Test Conditions

DCVDD=1.8V, AVDD=DBVDD=SPKVDD= 3.3V, T_A = +25°C, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated. SYMBOL TEST CONDITIONS MIN ТҮР UNIT PARAMETER MAX Automatic Level Control (ALC) Target Record Level -22.5 -1.5 dB Programmable gain -12 35.25 Gain Hold Time (Note 3,5) MCLK = 12.288MHz 0, 2.67, 5.33, 10.67, ..., 43691 ms t_{HOLD} (Note 3) (time doubles with each step) ALCMODE=0 (ALC), Gain Ramp-Up (Decay) Time 3.3, 6.6, 13.1, ... , 3360 t_{DCY} ms MCLK=12.288MHz (Note 4,5) (time doubles with each step) (Note 3) ALCMODE=1 (limiter), 0.73, 1.45, 2.91, ..., 744 MCLK=12.288MHz (time doubles with each step) (Note 3) Gain Ramp-Down (Attack) Time ALCMODE=0 (ALC), 0.83, 1.66, 3.33, ..., 852 t_{ATK} ms MCLK=12.288MHz (Note 4,5) (time doubles with each step) (Note 3) ALCMODE=1 (limiter), 0.18, 0.36, 0.73, ... , 186 MCLK=12.288MHz (time doubles with each step) (Note 3) Mute Attenuation 120 dB Analogue to Digital Converter (ADC) Signal to Noise Ratio (Note 6) SNR A-weighted, 0dB gain 85 95 dB **Total Harmonic Distortion** THD -3dBFS input -84 -74 dB (Note 7) Channel Separation (Note 9) 110 dB 1kHz input signal Digital to Analogue Converter (DAC) to Line-Out (LOUT1, ROUT1 with 10kQ / 50pF load) Full-scale output PGA gains set to 0dB, AVDD/3.3 Vrms OUT34BOOST=0 PGA gains set to 0dB, 1.5x OUT34BOOST=1 (AVDD/3.3) Signal to Noise Ratio (Note 6) SNR A-weighted 90 98 dB **Total Harmonic Distortion** THD -76 $R_L = 10k\Omega$ -84 dB (Note 7) full-scale signal Channel Separation (Note 8) 1kHz signal 110 dB Output Mixers (LMX1, RMX1) Maximum PGA gain into mixer +6 dB Minimum PGA gain into mixer -15 dB PGA gain step into mixer Guaranteed monotonic 3 dB Analogue Outputs (LOUT1, ROUT1, LOUT2, ROUT2) Maximum Programmable Gain +6 dB dB Minimum Programmable Gain -57 Programmable Gain step size Guaranteed monotonic 1 dB Mute attenuation 1kHz, full scale signal 85 dB Headphone Output (LOUT1, ROUT1 with 32Ω load) 0dB full scale output voltage AVDD/3.3 Vrms Signal to Noise Ratio SNR 102 dB A-weighted **Total Harmonic Distortion** THD 0.003 $R_L = 16\Omega$, Po=20mW % AVDD=3.3V -92 dB

R_I = 32 Ω, Po=20mW

AVDD=3.3V

%

dB

0.008

- 82

Production Data

Test Conditions	PKVDD= 3 3V	T₄ = +25°C 1kHz signal	fs = 48kHz 2	4-bit audio dat	a unless other	wise stated
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Speaker Output (LOUT2, ROUT	2 with 8Ω bridg	e tied load, INVROUT2:	=1)			
Full scale output voltage, 0dB		SPKBOOST=0		SPKVDD/3.3		Vrms
gain. (Note 9)		SPKBOOST=1	(S	PKVDD/3.3)*1	.5	
Output Power	Po	Output power	is very closely	correlated wit	h THD; see be	low
Total Harmonic Distortion	THD	$P_0 = 200 \text{mW}, R_L = 8\Omega,$		0.04		%
		SPKVDD=3.3V		-68		dB
		P ₀ =320mW, R _L = 8Ω,		1.0		%
		SPKVDD=3.3V		-40		dB
		P_0 =500mW, R_L = 8 Ω ,		0.02		%
		SPKVDD=5V		-74		dB
		P_0 =860mW, R_L = 8Ω,		1.0		%
		SPKVDD=5V		-40		dB
Signal to Noise Ratio	SNR	SPKVDD=3.3V,		90		dB
		R _L = 8Ω				
		SPKVDD=5V,		90		dB
		R _L = 8Ω				
Power Supply Rejection Ratio	PSRR	$R_L = 8\Omega BTL$		80		dB
(50Hz-22kHz)		$R_L = 8\Omega BTL$		69		dB
	(50 - 5 - 1 1)	SPKVDD=5V (boost)				
) /mag a
Full-scale output voltage, 00B		001380081=0/		SPKVDD/3.3		vrms
gain (Noto 10)		0014B00ST=0	(6		F	Vrmo
		0013B0051=1	(5	PKVDD/3.3)*1	.5	vrms
Signal to Noise Patio (Note 6)	SND			0.9		dD
Total Harmonic Distortion				90		
(Note 7)		full-scale signal		-04		uБ
(Note 7) Channel Separation (Note 8)		1kHz signal		100		dB
Power Supply Rejection Ratio	PSRR	$B_i = 10kO$		52		dB
(50Hz-22kHz)	1 Orac	$R_{\rm r} = 10k_{\rm O} SPKVDD=5V$		56		dB
		(boost)				40
Microphone Bias		1 · · ·				
Bias Voltage	V _{MICBIAS}	MBVSEL=0		0.9*AVDD		V
		MBVSEL=1		0.65*AVDD		V
Bias Current Source	IMICBIAS				3	mA
Output Noise Voltage	Vn	1K to 20kHz		15		nV/√Hz
Digital Input / Output						
Input HIGH Level	V _{IH}		0.7×DBVDD			V
Input LOW Level	VIL				0.3×DBVDD	V
Output HIGH Level	V _{OH}	I _{OL} =1mA	0.9×DBVDD			V
Output LOW Level	V _{OL}	I _{он} -1mA			0.1xDBVDD	V
Input capacitance				10		pF
Input leakage				50		pА

TERMINOLOGY

- 1. Input level to RIP and LIP is limited to a maximum of -3dB or THD+N performance will be reduced.
- 2. Note when BEEP path is not enabled then AUXL and AUXR have the same input impedances.
- 3. Hold Time is the length of time between a signal detected being too quiet and beginning to ramp up the gain. It does not apply to ramping down the gain when the signal is too loud, which happens without a delay.
- 4. Ramp-up and Ramp-Down times are defined as the time it takes for the PGA to sweep across 90% of its gain range.
- 5. All hold, ramp-up and ramp-down times scale proportionally with MCLK
- 6. Signal-to-noise ratio (dB) SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
- 7. THD+N (dB) THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.
- Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Measured by applying a full scale signal to one channel input and measuring the level of signal apparent at the other channel output.
- The maximum output voltage can be limited by the speaker power supply. If OUT3BOOST, OUT4BOOST or SPKBOOST is set then SPKVDD should be 1.5xAVDD to prevent clipping taking place in the output stage (when PGA gains are set to 0dB).

SPEAKER OUTPUT THD VERSUS POWER

POWER CONSUMPTION

- · · ·		~					
I voical current	consumption	tor	various	scenarios	15	shown	below
i jpiour ourront	oonoumption	.0.	v anouo	0001101100	.0	01101111	

MODE	AVDD	DCVDD	DBVDD ¹	TOTAL
	(3.0V)	(1.8V)	(3.0V)	POWER
	(mA)	(mA)	(mA)	(mW)
Off	0.04 ³	0.0008	<0.0001	0.12
Sleep (VREF maintained, no clocks)	0.04	0.0008	<0.0001	0.12
Stereo Record (8kHz) ²	4.1	1.0	0.001	14.1
Stereo 16Ω HP Playback (44.1kHz, quiescent) ²	3.3	6.2	0.004	21.1
Stereo 16 Ω HP Playback (44.1kHz, white noise) ²	5.4	7.3	0.004	29.4
Stereo 16Ω HP Playback (44.1kHz, sine wave) ²	18	6.7	0.004	66.1

Notes:

1. DBVDD Current will increase with greater loading on digital I/O pins.

2. 5 Band EQ is enabled.

3. AVDD standby current will fall to nearer 15uA when thermal shutdown sensor is disabled.

Table 1 Power Consumption

ESTIMATING SUPPLY CURRENT

When either the DAC or ADC is enabled approximately 7mA will be drawn from DCVDD when DCVDD=1.8V and fs=48kHz. When the PLL is enabled approximately 1.5mA additional current will be drawn from DCVDD.

As a general rule, digital supply currents will scale in proportion to sample rates. Supply current for analogue and digital blocks will also be lower at lower supply voltages.

Power consumed by the output drivers will depend greatly on the signal characteristics. A quiet signal, or a signal with long periods of silence will consume less power than a signal which is continuously loud.

Estimated supply current for the analogue blocks is shown in Table 2. Note that power dissipated in the load is not shown.

REGISTER BIT	AVDD CURRENT (mA)
	AVDD=3.3V
BUFDCOPEN	0.1
OUT4MIXEN	0.2
OUT3MIXEN	0.2
PLLEN	1.2 (with clocks applied)
MICBEN	0.5
BIASEN	0.3
BUFIOEN	0.1
VMIDSEL	5KΩ = >0.3, less than 0.1 for 75KΩ 300KΩ settings
ROUT1EN	0.4
LOUT1EN	0.4
BOOSTENR	0.2
BOOSTENL	0.2
INPPGAENR	0.2
INPPGAENL	0.2
ADCENR	2.6 (x64, ADCOSR=0)
	4.9 (x128, ADCOSR=1)
ADCENL	2.6 (x64, ADCOSR=0)
	4.9 (x128, ADCOSR=1)
OUT4EN	0.2
OUT3EN	0.2
LOUT2EN	1mA from SPKVDD + 0.2mA from AVDD in 5V mode
ROUT2EN	1mA from SPKVDD + 0.2mA from AVDD in 5V mode
RMIXEN	0.2
LMIXEN	0.2
DACENR	1.8 (x64, DACOSR=0)
	1.9 (x128, DACOSR=1)
DACENL	1.8 (x64, DACOSR=0)
	1.9 (x128, DACOSR=1)

Table 2 AVDD Supply Current (AVDD=3.3V)

AUDIO PATHS OVERVIEW

SIGNAL TIMING REQUIREMENTS

SYSTEM CLOCK TIMING

Figure 1 System Clock Timing Requirements

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T_A = +25°C

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
System Clock Timing Information						
MCLK avala time	T _{MCLKY}	MCLK=SYSCLK (=256fs)	81.38			ns
		MCLK input to PLL Note 1	20			ns
MCLK duty cycle	T _{MCLKDS}		60:40		40:60	

Note 1:

PLL pre-scaling and PLL N and K values should be set appropriately so that SYSCLK is no greater than 12.288MHz.

AUDIO INTERFACE TIMING – MASTER MODE

Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)

Test Conditions

 $\label{eq:DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T_{A}=+25^{\circ}C, Master Mode, fs=48kHz, MCLK=256fs, 24-bit data, unless otherwise stated.$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
LRC propagation delay from BCLK falling edge	t _{DL}			10	ns
ADCDAT propagation delay from BCLK falling edge	t _{DDA}			10	ns
DACDAT setup time to BCLK rising edge	t _{DST}	10			ns
DACDAT hold time from BCLK rising edge	t _{DHT}	10			ns

AUDIO INTERFACE TIMING – SLAVE MODE

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T_A=+25^oC, Slave Mode, fs=48kHz, MCLK= 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
BCLK cycle time	t _{BCY}	50			ns
BCLK pulse width high	t _{BCH}	20			ns
BCLK pulse width low	t _{BCL}	20			ns
LRC set-up time to BCLK rising edge	t _{LRSU}	10			ns
LRC hold time from BCLK rising edge	t _{LRH}	10			ns
DACDAT hold time from BCLK rising edge	t _{DH}	10			ns
DACDAT set-up time to BCLK rising edge	t _{Ds}	10			ns
ADCDAT propagation delay from BCLK falling edge	t _{DD}			10	ns

Note:

BCLK period should always be greater than or equal to MCLK period.

CONTROL INTERFACE TIMING – 3-WIRE MODE

Figure 4 Control Interface Timing – 3-Wire Serial Control Mode

Test Conditions

DCVDD = 1.8V, DBVDD = AVDD = SPKVDD = 3.3V, DGND = AGND = SPKGND = 0V, T_A =+25°C, Slave Mode, fs=48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	
Program Register Input Information						
SCLK rising edge to CSB rising edge	t _{scs}	80			ns	
SCLK pulse cycle time	t _{SCY}	200			ns	
SCLK pulse width low	t _{SCL}	80			ns	
SCLK pulse width high	t _{sch}	80			ns	
SDIN to SCLK set-up time	t _{DSU}	40			ns	
SCLK to SDIN hold time	t _{DHO}	40			ns	
CSB pulse width low	t _{CSL}	40			ns	
CSB pulse width high	t _{CSH}	40			ns	
CSB rising to SCLK rising	t _{css}	40			ns	
Pulse width of spikes that will be suppressed	t _{ps}	0		5	ns	

CONTROL INTERFACE TIMING – 2-WIRE MODE

Figure 5 Control Interface Timing – 2-Wire Serial Control Mode

Test Conditions

 $\label{eq:decomposition} DCVDD=1.8V, \quad DBVDD=AVDD=SPKVDD=3.3V, \quad DGND=AGND=SPKGND=0V, \quad T_A=+25^\circ C, \quad Slave \quad Mode, \quad fs=48 \mbox{ kHz}, \\ MCLK=256 \mbox{ fs}, \ 24-bit \ data, \ unless \ otherwise \ stated.$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	
Program Register Input Information						
SCLK Frequency		0		526	kHz	
SCLK Low Pulse-Width	t ₁	1.3			us	
SCLK High Pulse-Width	t ₂	600			ns	
Hold Time (Start Condition)	t ₃	600			ns	
Setup Time (Start Condition)	t ₄	600			ns	
Data Setup Time	t ₅	100			ns	
SDIN, SCLK Rise Time	t ₆			300	ns	
SDIN, SCLK Fall Time	t ₇			300	ns	
Setup Time (Stop Condition)	t ₈	600			ns	
Data Hold Time	t ₉			900	ns	
Pulse width of spikes that will be suppressed	t _{ps}	0		5	ns	

INTERNAL POWER ON RESET CIRCUIT

Figure 6 Internal Power on Reset Circuit Schematic

The WM8978 includes an internal Power-On-Reset Circuit (POR), as shown in Figure 6, which is used reset the digital logic into a default state after power up. The POR circuit is powered from AVDD and monitors DVDD. It asserts PORB low if AVDD or DVDD is below a minimum threshold.

Figure 7 Typical Power up Sequence where AVDD is Powered before DVDD

Figure 7 shows a typical power-up sequence where AVDD comes up first. When AVDD goes above the minimum threshold, V_{pora} , there is enough voltage for the circuit to guarantee PORB is asserted low and the chip is held in reset. In this condition, all writes to the control interface are ignored. AVDD will then ramp up to full supply level. Next DVDD rises to V_{pord_on} and PORB is released high and all registers are in their default state and writes to the control interface may take place.

On power down, where AVDD falls first, PORB is asserted low whenever AVDD drops below the minimum threshold $V_{pora_off}.$

Figure 8 Typical Power up Sequence where DVDD is Powered before AVDD

Figure 8 shows a typical power-up sequence where DVDD comes up first. First it is assumed that DVDD is already up to specified operating voltage. When AVDD goes above the minimum threshold, V_{pora} , there is enough voltage for the circuit to guarantee PORB is asserted low and the chip is held in reset. In this condition, all writes to the control interface are ignored. When AVDD rises to $V_{pora,on}$, PORB is released high and all registers are in their default state and writes to the control interface may take place.

On power down, where DVDD falls first, PORB is asserted low whenever DVDD drops below the minimum threshold $V_{\text{pord}_off}.$

SYMBOL	MIN	ТҮР	MAX	UNIT
V _{pora}	0.4	0.6	0.8	V
V _{pora_on}	0.9	1.2	1.6	V
V _{pora_off}	0.4	0.6	0.8	V
V _{pord_on}	0.5	0.7	0.9	V
V _{pord_off}	0.4	0.6	0.8	V

Table 3 Typical POR operation (typical simulated values)

Notes:

- If AVDD and DVDD suffer a brown-out (i.e. drop below the minimum recommended operating level but do not go below V_{pora_off} or V_{pord_off}) then the chip will not reset and will resume normal operation when the voltage is back to the recommended level again.
- The chip will enter reset at power down when AVDD or DVDD falls below V_{pora_off} or V_{pord_off}. This
 may be important if the supply is turned on and off frequently by a power management system.
- The minimum t_{por} period is maintained even if DVDD and AVDD have zero rise time. This specification is guaranteed by design rather than test.

INTRODUCTION

The WM8978 is a low power audio CODEC combining a high quality stereo audio DAC and ADC, with flexible line and microphone input and output processing. Applications for this device include multimedia phones, stereo digital camcorders, and digital still cameras with either mono or stereo record and playback capability.

FEATURES

The chip offers great flexibility in use, and so can support many different modes of operation as follows:

MICROPHONE INPUTS

Two pairs of stereo microphone inputs are provided, allowing a pair of stereo microphones to be pseudo-differentially connected, with user defined gain using internal resistors. The provision of the common mode input pin for each stereo input allows for rejection of common mode noise on the microphone inputs (level depends on gain setting chosen). A microphone bias is output from the chip which can be used to bias both microphones. The signal routing can be configured to allow manual adjustment of mic levels, or to allow the ALC loop to control the level of mic signal that is transmitted.

Total gain through the microphone paths of up to +55.25dB can be selected.

PGA AND ALC OPERATION

A programmable gain amplifier is provided in the input path to the ADC. This may be used manually or in conjunction with a mixed analogue/digital automatic level control (ALC) which keeps the recording volume constant.

LINE INPUTS (AUXL, AUXR)

The inputs, AUXL and AUXR, can be used as a stereo line input or as an input for warning tones (or 'beeps') etc. These inputs can be summed into the record paths, along with the microphone preamp outputs, so allowing for mixing of audio with 'backing music' etc as required.

ADC

The stereo ADC uses a 24-bit delta sigma oversampling architecture to deliver optimum performance with low power consumption.

HI-FI DAC

The hi-fi DAC provides high quality audio playback suitable for all portable audio hi-fi type applications, including MP3 players and portable disc players of all types.

OUTPUT MIXERS

Flexible mixing is provided on the outputs of the device. A stereo mixer is provided for the stereo headphone or line outputs, LOUT1/ROUT1, and additional summers on the OUT3/OUT4 outputs allow for an optional differential or stereo line output on these pins. Gain adjustment PGAs are provided for the LOUT1/ROUT1 and LOUT2/ROUT2 outputs, and signal switching is provided to allow for all possible signal combinations. The output buffers can be configured in several ways, allowing support of up to three sets of external transducers; ie stereo headphone, BTL speaker, and BTL earpiece may be connected simultaneously. Thermal implications should be considered before simultaneous full power operation of all outputs is attempted.

Alternatively, if a speaker output is not required, the LOUT2 and ROUT2 pins might be used as a stereo headphone driver, (disable output invert buffer on ROUT2). In that case two sets of headphones might be driven, or the LOUT2 and ROUT2 pins used as a line output driver.

WM8978

OUT3 and OUT4 can be configured to provide an additional stereo lineout from the output of the DACs, the mixers or the input microphone boost stages. Alternatively OUT4 can be configured as a mono mix of left and right DACs or mixers, or simply a buffered version of the chip midrail reference voltage. OUT3 can also be configured as a buffered VMID output. This voltage may then be used as a headphone 'pseudo ground' allowing removal of the large AC coupling capacitors often used in the output path.

AUDIO INTERFACES

The WM8978 has a standard audio interface, to support the transmission of stereo data to and from the chip. This interface is a 3 wire standard audio interface which supports a number of audio data formats including I2S, DSP/PCM Mode (a burst mode in which LRC sync plus 2 data packed words are transmitted), MSB-First, left justified and MSB-First, right justified, and can operate in master or slave modes.

CONTROL INTERFACES

To allow full software control over all features, the WM8978 offers a choice of 2 or 3 wire control interface. It is fully compatible and an ideal partner for a wide range of industry standard microprocessors, controllers and DSPs.

Selection between the modes is via the MODE pin. In 2 wire mode the address of the device is fixed as 0011010.

CLOCKING SCHEMES

WM8978 offers the normal audio DAC clocking scheme operation, where 256fs MCLK is provided to the DAC and ADC.

A PLL is included which may be used to generate these clocks in the event that they are not available from the system controller. This PLL uses an input clock, typically the 12MHz USB or ilink clock, to generate high quality audio clocks. If this PLL is not required for generation of these clocks, it can be reconfigured to generate alternative clocks which may then be output on the GPIO pins and used elsewhere in the system.

POWER CONTROL

The design of the WM8978 has given much attention to power consumption without compromising performance. It operates at very low voltages, and includes the ability to power off any unused parts of the circuitry under software control, and includes standby and power off modes.

OPERATION SCENARIOS

Flexibility in the design of the WM8978 allows for a wide range of operational scenarios, some of which are proposed below:

Multimedia phone; High quality playback to a stereo headset, a mono ear speaker or a loudspeaker is supported, allowing hi-fi playback to be mixed with voice and other analogue inputs while simultaneously transmitting a differential output from the microphone amplifier. A 5-band EQ enables hi-fi playback to be customised to suit the user's preferences and the music style, while programmable filtering allows fixed-frequency noise (e.g. 217Hz) to be reduced in the digital domain.

Stereo Camcorder; The provision of two stereo microphone preamplifiers, allows support for both internal and external microphones. All drivers for speaker, headphone and line output connections are integrated. The selectable 'application filters' after the ADC provide for features such as 'wind noise' reduction, or mechanical noise reducing filters.

Stereo Digital still camera recording; Support for digital stereo recording is similar to the camcorder case. But additionally if the DSC supports MP3 playback, and perhaps recording, the ability of the ADCs to support full 48ks/s high quality stereo recording increases device flexibility.

Mono Digital still camera; Full control over device functionality, and power control is provided, allowing for the case of mono DSC recording, when half of the ADC and mic and line functionality may be disabled to save power. In the mono case, the single ADC channel of audio data is sent out over the Left channel of the audio interface.

AUXILIARY ANALOGUE INPUTS

An analogue stereo FM tuner or other auxiliary analogue input can be connected to the Line inputs of WM8978, and the stereo signal listened to via headphones, or recorded, simultaneously if required.

INPUT SIGNAL PATH

The WM8978 has a number of flexible analogue inputs. There are two input channels, Left and Right, each of which consists of an input PGA stage followed by a boost/mix stage which drives into the hi-fi ADC. Each input path has three input pins which can be configured in a variety of ways to accommodate single-ended, differential or dual differential microphones. There are two auxiliary input pins which can be fed into to the input boost/mix stage as well as driving into the output path. A bypass path exists from the output of the boost/mix stage into the output left/right mixers.

MICROPHONE INPUTS

The WM8978 can accommodate a variety of microphone configurations including single ended and differential inputs. The inputs to the left differential input PGA are LIN, LIP and L2. The inputs to the right differential input PGA are RIN, RIP and R2.

In single-ended microphone input configuration the microphone signal should be input to LIN or RIN and the internal NOR gate configured to clamp the non-inverting input of the input PGA to VMID.

In differential mode the larger signal should be input to LIP or RIP and the smaller (e.g. noisy ground connection) should be input to LIN or RIN.

Figure 9 Microphone Input PGA Circuit

The input PGAs are enabled b	v the IPPGAENL/R register bits.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	2	INPPGAENL	0	Left channel input PGA enable
Power				0 = disabled
Management				1 = enabled
2	3	INPPGAENR	0	Right channel input PGA enable
				0 = disabled
				1 = enabled

Table 4 Input PGA Enable Register Settings

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R44 Input	0	LIP2INPPGA	1	Connect LIP pin to left channel input PGA amplifier positive terminal.
Control				0 = LIP not connected to input PGA
				1 = input PGA amplifier positive terminal connected to LIP (constant input impedance)
	1	LIN2INPPGA	1	Connect LIN pin to left channel input PGA negative terminal.
				0=LIN not connected to input PGA
				1=LIN connected to input PGA amplifier negative terminal.
	2	L2_2INPPGA	0	Connect L2 pin to left channel input PGA positive terminal.
				0=L2 not connected to input PGA
				1=L2 connected to input PGA amplifier positive terminal (constant input impedance).
	4	RIP2INPPGA	1	Connect RIP pin to right channel input PGA amplifier positive terminal.
				0 = RIP not connected to input PGA
				1 = right channel input PGA amplifier positive terminal connected to RIP (constant input impedance)
	5	RIN2INPPGA	1	Connect RIN pin to right channel input PGA negative terminal.
				0=RIN not connected to input PGA
				1=RIN connected to right channel input PGA amplifier negative terminal.
	6	R2_2INPPGA	0	Connect R2 pin to right channel input PGA positive terminal.
				0=R2 not connected to input PGA
				1=R2 connected to input PGA amplifier positive terminal (constant input impedance).

Table 5 Input PGA Control

INPUT PGA VOLUME CONTROLS

The input microphone PGAs have a gain range from -12dB to +35.25dB in 0.75dB steps. The gain from the LIN/RIN input to the PGA output and from the L2/R2 amplifier to the PGA output are always common and controlled by the register bits INPPGAVOLL/R[5:0]. These register bits also affect the LIP pin when LIP2INPPGA=1, the L2 pin when L2_2INPPGA=1, the RIP pin when RIP2INPPGA=1 and the L2 pin when L2_2INPPGA=1.

When the Automatic Level Control (ALC) is enabled the input PGA gains are controlled automatically and the INPPGAVOLL/R bits should not be used.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R45 Left channel input PGA volume control	5:0	INPPGAVOLL	010000	Left channel input PGA volume 000000 = -12dB 000001 = -11.25db
				010000 = 0dB 111111 = 35 25dB
	6	INPPGAMUTEL	0	Mute control for left channel input PGA:
				0=Input PGA not muted, normal operation
				1=Input PGA muted (and disconnected from the following input BOOST stage).
	7	INPPGAZCL	0	Left channel input PGA zero cross enable:
				0=Update gain when gain register changes
				1=Update gain on 1 st zero cross after gain register write.
	8	INPPGAUPDATE	Not latched	INPPGAVOLL and INPPGAVOLR volume do not update until a 1 is written to INPPGAUPDATE (in reg 45 or 46)
R46	5:0	INPPGAVOLR	010000	Right channel input PGA volume
Right channel				000000 = -12dB 000001 = -11.25db
input PGA				
volume				010000 = 0dB
Control				
				111111 = +35.25dB
	6	INPPGAMUTER	0	Mute control for right channel input PGA:
				operation
				1=Input PGA muted (and disconnected from the following input BOOST stage).
	7	INPPGAZCR	0	Right channel input PGA zero cross enable:
				0=Update gain when gain register changes
				1=Update gain on 1 st zero cross after gain register write.
	8	INPPGAUPDATE	Not latched	INPPGAVOLL and INPPGAVOLR volume do not update until a 1 is written to INPPGAUPDATE (in reg 45 or 46)
R32	8:7	ALCSEL	00	ALC function select:
ALC control				00=ALC off
1				01=ALC right only
				10=ALC left only

Table 6 Input PGA Volume Control

VOLUME UPDATES

Volume settings will not be applied to the PGAs until a '1' is written to one of the INPPGAUPDATE bits. This is to allow left and right channels to be updated at the same time, as shown in Figure 10.

