imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AC'97 Audio and Touchpanel CODEC

DESCRIPTION

The WM9712L is a highly integrated input / output device designed for mobile computing and communications. The device can connect directly to a 4-wire or 5-wire touchpanel, mono or stereo microphones, stereo headphones and a mono speaker, reducing total component count in the system. Additionally, phone input and output pins are provided for seamless integration with wireless communication devices.

The WM9712L also offers up to four auxiliary ADC inputs for analogue measurements such as temperature or light, and five GPIO pins for interfacing to buttons or other digital devices. To monitor the battery voltage in portable systems, the WM9712L has two uncommitted comparator inputs.

All device functions are accessed and controlled through a single AC-Link interface compliant with the AC'97 standard. Additionally, the WM9712L can generate interrupts to indicate pen down, pen up, availability of touchpanel data, low battery, dead battery, and GPIO conditions.

The WM9712L operates at supply voltages from 1.8 to 3.6 Volts. Each section of the chip can be powered down under software control to save power. The device is available in a small leadless 7x7mm QFN package, ideal for use in handheld portable systems.

FEATURES

- AC'97 Rev 2.2 compatible stereo CODEC
 - DAC SNR 94dB, THD -87dB
 - ADC SNR 92dB, THD -87dB
 - Variable Rate Audio, supports all WinCE sample rates
 - Tone Control, Bass Boost and 3D Enhancement
- On-chip 45mW headphone driver
- On-chip 400mW mono speaker driver
- Stereo, mono or differential microphone input
- Automatic Level Control (ALC)
- Auxiliary mono DAC (ring tone or DC level generation)
- Seamless interface to wireless chipset
- Resistive touchpanel interface
 - Supports 4-wire and 5-wire panels
 - 12-bit resolution, INL ±2 LSBs (<0.5 pixels)
 - X, Y and touch-pressure (Z) measurement
 - Pen-down detection supported in Sleep Mode
- Up to 5 GPIO pins
- 2 comparator inputs for battery monitoring
- · Up to 4 auxiliary ADC inputs
- 1.8V to 3.6V supplies
- 7x7mm QFN

APPLICATIONS

- Personal Digital Assistants (PDA)
- Smartphones
- Handheld and Tablet Computers

BLOCK DIAGRAM

WOLFSON MICROELECTRONICS plc

Production Data, November 2011, Rev 4.6

To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews

TABLE OF CONTENTS

DESCRIPTION	. 1
FEATURES	. 1
APPLICATIONS	. 1
BLOCK DIAGRAM	. 1
TABLE OF CONTENTS	. 2
PIN CONFIGURATION	. 4
ORDERING INFORMATION	4
PIN DESCRIPTION	5
ABSOLUTE MAXIMUM BATINGS	6
	۰. ۵
	.0
	. /
	/ Q
	0 8
TOUCHPANEL AND AUXILIARY ADC	0
COMPARATORS	9
REFERENCE VOLTAGES	10
DIGITAL INTERFACE CHARACTERISTICS	10
HEADPHONE / SPEAKER OUTPUT THD VERSUS POWER	11
POWER CONSUMPTION	12
DEVICE DESCRIPTION	13
INTRODUCTION	13
AUDIO PATHS OVERVIEW	14
AUDIO INPUTS	15
LINE INPUT	15
MICROPHONE INPUT	15
PHONE INPUT	17
PCBEEP INPUT	18
	19
RECORD SELECTOR	20
RECORD GAIN	21
AUTOMATIC LEVEL CONTROL	22
AUDIO DACS	25
STEREO DAC	25
	28
ANALOGUE AUDIO OUTPUTS	29
HEADPHONE OUTPUTS – HPOUTL AND HPOUTR	29
EAR SPEAKER OUTPUT – OUT3	30
LUUDSPEAKER UUTPUTS – LUUTZ AND RUUTZ	31
	32 22
	32 33
	34
AUDIO MIXERS	35
VABIABLE BATE AUDIO / SAMPLE BATE CONVERSION	37
	38
PRINCIPIE OF OPERATION - FOUR-WIRE TOUCHPANEL	38
PRINCIPLE OF OPERATION - FIVE-WIRE TOUCHPANEI	40
	-

PD, Rev 4.6, November 2011

WM9712L Production Data LINE OUTPUT......72 AC-COUPLED HEADPHONE OUTPUT73 COMBINED HEADSET / BTL EAR SPEAKER74 JACK INSERT DETECTION75

PIN CONFIGURATION

ORDERING INFORMATION

DEVICE	TEMP. RANGE	PACKAGE	MOISTURE LEVEL SENSITIVITY	PEAK SOLDERING TEMP
WM9712CLGEFL/V	-25 to +85°C	48-lead QFN (Pb-free)	MSL3	260°C
WM9712CLGEFL/RV	-25 to +85°C	48-lead QFN (pb-free, tape and reel)	MSL3	260°C

Note:

Reel quantity = 2,200

PIN DESCRIPTION

PIN	NAME	ТҮРЕ	DESCRIPTION
1	DBVDD	Supply	Digital I/O Buffer Supply
2	XTLIN	Digital Input	Clock Crystal Connection 1 / External Clock Input
3	XTLOUT	Digital Output	Clock Crystal Connection 2
4	DGND1	Supply	Digital Ground (return path for both DCVDD and DBVDD)
5	SDATAOUT	Digital Input	Serial Data Output from Controller / Input to WM9712L
6	BITCLK	Digital Output	Serial Interface Clock Output to Controller
7	DGND2	Supply	Digital Ground (return path for both DCVDD and DBVDD)
8	SDATAIN	Digital Output	Serial Data Input to Controller / Output from WM9712L
9	DCVDD	Supply	Digital Core Supply
10	SYNC	Digital Input	Serial Interface Synchronisation Pulse from Controller
11	RESETB	Digital Input	Reset (asynchronous, active Low, resets all registers to their default)
12	WIPER / AUX4	Analogue Input	Top Sheet Connection for 5-wire Touchpanels / Auxiliary ADC Input
13	TPVDD	Supply	Touchpanel Driver Supply
14	X+/BR	Analogue Input	Touchpanel Connection: X+ (Right) for 4-wire / bottom right for 5-wire
15	Y+/TR	Analogue Input	Touchpanel Connection: Y+ (Top) for 4-wire / top right for 5-wire
16	X-/TL	Analogue Input	Touchpanel Connection: X- (Left) for 4-wire / top left for 5-wire
17	Y-/BL	Analogue Input	Touchpanel Connection: Y- (Bottom) for 4-wire / bottom left for 5-wire
18	TPGND	Supply	Touchpanel Driver Ground
19	PCBEEP	Analogue Input	Line Input to analogue audio mixers, typically used for beeps
20	PHONE	Analogue Input	Phone Input (RX)
21	MIC1	Analogue Input	Left Microphone or Microphone 1 Input
22	MIC2	Analogue Input	Right Microphone or Microphone 2 Input
23	LINEINL	Analogue Input	Left Line Input
24	LINEINR	Analogue Input	Right Line Input
25	AVDD	Supply	Analogue Supply (feeds audio DACs, ADCs, PGAs, mic boost, mixers)
26	AGND	Supply	Analogue Ground
27	VREF	Analogue Output	Internal Reference Voltage (buffered CAP2)
28	MICBIAS	Analogue Output	Bias Voltage for Microphones (buffered CAP2 \times 1.8)
29	COMP1 / AUX1	Analogue Input	Comparator 1 (dead battery alarm) / Auxiliary ADC Input 1
30	COMP2 / AUX2	Analogue Input	Comparator 2 (low battery alarm) / Auxiliary ADC Input 2
31	BMON / AUX3	Analogue Input	Battery Monitor Input / Auxiliary ADC Input 3
32	CAP2	Analogue In / Out	Internal Reference Voltage (normally AVDD/2, if not overdriven)
33	MONOOUT	Analogue Output	Mono Output, intended for Phone TX signal
34	SPKGND	Supply	Speaker Ground (feeds output buffers on pins 35 and 36)
35	LOUT2	Analogue Output	Left Output 2 (Speaker, Line or Headphone)
36	ROUT2	Analogue Output	Right Output 2 (Speaker, Line or Headphone)
37	OUT3	Analogue Output	Analogue Output 3 (from AUXDAC or headphone pseudo-ground)
38	SPKVDD	Supply	Speaker Supply (feeds output buffers on pins 35 and 36)
39	HPOUTL	Analogue Output	Headphone Left Output
40	HPGND	Supply	Headphone Ground (feeds output buffers on pins 37, 39, 41)
41	HPOUTR	Analogue Output	Headphone Right Output
42	AGND2	Supply	Analogue Ground, Chip Substrate
43	HPVDD	Supply	Headphone Supply (feeds output buffers on pins 37, 39, 41)
44	GPIO1	Digital In / Out	GPIO Pin 1
45	GPIO2 / IRQ	Digital In / Out	GPIO Pin 2 or IRQ (Interrupt Request) Output
46	GPIO3 / PENDOWN	Digital In / Out	GPIO Pin 3 or Pen Down Output
47	GPIO4 / ADA / MASK	Digital In / Out	GPIO Pin 4 or ADA (ADC Data Available) Output or Mask input (On reset, pin level configures device power up status. See Applications section for external components configuration)
48	GPIO5 / SPDIF_OUT	Digital In / Out	GPIO Pin 5 or SPDIF Digital Audio Output

Note: It is recommended that the QFN ground paddle should be connected to analogue ground on the application PCB.

PD, Rev 4.6, November 2011

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag. MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag. MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	МАХ
Digital supply voltages (DCVDD, DBVDD)	-0.3V	+3.63V
Analogue supply voltages (AVDD, HPVDD, SPKVDD, TPVDD)	-0.3V	+3.63V
Touchpanel supply voltage (TPVDD)	AVDD -0.3V	AVDD +0.3V
Voltage range digital inputs	DGND-0.3V	DBVDD +0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD +0.3V
Voltage range touchpanel Inputs X+, X-, Y+ and Y-		TPVDD +0.3V
Voltage range touchpanel Inputs X+, X-, Y+ and Y-		AVDD +0.3V
Voltage range, BMON/AUX3 (pin31)		+5V
Operating temperature range, T _A	-25°C	+85°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
Digital input/output buffer supply range	DBVDD	Notes 1, 2	1.8		3.6 or AVDD+0.3	V
Digital core supply range	DCVDD	Notes 1, 2	1.8		3.6 or AVDD+0.3	V
Analogue supply range	AVDD, HPVDD, SPKVDD, TPVDD		1.8		3.6	V
Digital ground	DCGND, DBGND			0		V
Analogue ground	AGND, HPGND, SPKGND, TPGND			0		V
Difference AGND to DGND		Note 3	-0.3	0	+0.3	V

Notes:

- 1. AVDD, DCVDD and DBVDD can all be different
- Digital supplies (DCVDD, DBVDD) must not exceed analogue supplies (AVDD, HPVDD, SPKVDD, TPVDD) by more than 0.3V
- 3. AGND is normally the same as DGND

ELECTRICAL CHARACTERISTICS

AUDIO OUTPUTS

Test Conditions

DBVDD=3.3V, DCVDD = 3.3V, AVDD=HPVDD=SPKVDD =3.3V, $T_A = +25^{\circ}C$, 1kHz signal, fs = 48kHz, 18-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT		
DAC to Line-Out (HPOUTL/R or MONOOUT with 10kΩ / 50pF load)								
Full-scale output		AVDD = 3.3V, PGA gains set to 0dB		1		V rms		
Signal to Noise Ratio (A-weighted)	SNR		85	94		dB		
Total Harmonic Distortion	THD	-3dB output		-87	-80	dB		
Power Supply Rejection	PSRR	100mV, 20Hz to 20kHz signal on AVDD		50		dB		
Speaker Output (LOUT2/ROUT2 with 8Ω bridge tied load, INV=1)								
Output Power	Po	Output power is	very closely co	orrelated with	THD; see belo	w.		
Output Power at 1% THD	Po			400		mW		
Abs. Max Output Power	Pomax			500		mW		
Total Harmonic Distortion	THD	Po=200mW		-66		dB		
				0.05		%		
Signal to Noise Ratio	SNR		90	100		dB		
(A-weighted)								
Headphone Output (HPOUTL/	R, OUT3 or L	OUT2/ROUT2 with 16 Ω or 3	2Ω load)					
Output Power per channel	Po	Output power is	very closely co	orrelated with	THD; see belo	w.		
Total Harmonic Distortion	THD	P_0 =10mW, R_L =16 Ω		-76		dB		
		P_0 =10mW, R _L =32 Ω		-73				
		P_0 =20mW, R _L =16 Ω		-75	-70			
		$P_0=20$ mW, $R_L=32\Omega$		-78				
Signal to Noise Ratio	SNR		90	95		dB		
(A-weighted)								

Note:

 All THD values are valid for the output power level quoted above – for example, at HPVDD=3.3V and R_L=16Ω, THD is -76dB when output power is 10mW. Higher output power is possible, but will result in a deterioration in THD.

AUDIO INPUTS

Test Conditions

DBVDD=3.3V, DCVDD = 3.3V, AVDD = 3.3V, T_A = +25°C, 1kHz signal, fs = 48kHz, 18-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
LINEINL/R, MICL/R and PHONE pins							
Full Scale Input Signal Level	VINFS	AVDD = 3.3V		1.0		V rms	
(for ADC 0dB Input at 0dB Gain)		AVDD = 1.8V		0.545			
		differential input mode (MS = 01)	half of	the value liste	d above		
Input Resistance	R _{IN}	0dB PGA gain		34		kΩ	
		12dB PGA gain	10	16	22]	
Input Capacitance				5		pF	
Line input to ADC (LINEINL, LIN	EINR, PHONI	E)					
Signal to Noise Ratio	SNR		85	92		dB	
(A-weighted)							
Total Harmonic Distortion	THD	-6dBFs		-87	-80	dB	
Power Supply Rejection	PSRR	20Hz to 20kHz		50		dB	
Microphone input to ADC (MIC1)	2 pins)						
Signal to Noise Ratio	SNR	20dB boost enabled		80		dB	
(A-weighted)							
Total Harmonic Distortion	THD	20dB boost enabled		-80		dB	
Power Supply Rejection Ratio	PSRR			50		dB	
Common Mode Rejection Ratio	CMRR	Differential mic mode		TBD		dB	

AUXILIARY MONO DAC (AUXDAC)

Test Conditions

AVDD = 3.3V, T_A = +25°C, unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Resolution				12		bits
Full scale output voltage		AVDD=3.3V		1		Vrms
Signal to Noise Ratio	SNR		65	70		dB
(A-weighted)						
Total Harmonic Distortion	THD			-62	-50	dB

TOUCHPANEL AND AUXILIARY ADC

Test Conditions

DBVDD=3.3V, DCVDD = 3.3V, AVDD = TPVDD = 3.3V, T_A = +25°C, MCLK = 24.576 MHz, unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT		
Input Pins X+, X-, Y+, Y-, WIPER/AUX4, COMP1/AUX1, COMP2/AUX2 and BMON/AUX3								
Input Voltage			AGND		AVDD	V		
Input leakage current		AUX pin not selected as AUX ADC input		<10		nA		
ADC Resolution				12		bits		
Differential Non-Linearity Error	DNL			±0.25	±1	LSB		
Integral Non-Linearity Error	INL				±2	LSB		
Offset Error					±4	LSB		
Gain Error					±6	LSB		
Power Supply Rejection	PSRR			50		dB		
Throughput Rate		DEL = 1111 (zero settling time)			48	kHz		
Settling Time (programmable)		MCLK = 24.576MHz	0		6	ms		
Conversion Time		Note: touch pressure neasurements require two conversions		20.8		μS		
Switch matrix resistance				12		Ω		
Programmable Pull-up resistor	R _{PU}	RPU = 000001	55	63	70	kΩ		
Pen down detector threshold				VDD/2		V		
Pressure measurement current	I _P	PIL = 1		400		μA		
		PIL = 0		200				
BMON/AUX3 (pin 31 only)								
Input Range		AVDD = 3.3V	AGND		5	V		
		AVDD = 1.8V	AGND		3.3	V		
Scaling			-3%	1/3	+3%			
Input Resistance (Note 1)		during measurement		30		kΩ		
		average over time		30 / duty cycle				

Note:

1. Current only flows into pin 31 during a measurement. At all other times, BMON/AUX3 is effectively an open circuit.

COMPARATORS

Test Conditions

AVDD = 3.3V, T_A = +25°C, unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT			
COMP1/AUX1 and COMP2/AUX2 (pins 29, 30)									
Input Voltage			AGND		AVDD	V			
Input leakage current		pin not selected as AUX ADC input		<10		nA			
Comparator Input Offset			-50		+50	mV			
(COMP1, COMP2 only)									
COMP2 delay (COMP2 only)		24.576MHz crystal	0		10.9	s			

REFERENCE VOLTAGES

Test Conditions

DBVDD=3.3V, DCVDD = 3.3V, AVDD = 3.3V, T_A = +25°C, 1kHz signal, fs = 48kHz, 18-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Audio ADCs, DACs, Mixers						
Reference Input/Output	CAP2 pin		1.6	1.65	1.7	V
Buffered Reference Output	VREF pin		1.6	1.65	1.7	V
Microphone Bias						
Bias Voltage	V _{MICBIAS}		2.88	2.97	3.06	V
Bias Current Source	IMICBIAS				3	mA
Output Noise Voltage	Vn	1K to 20kHz		15		nV/√Hz

DIGITAL INTERFACE CHARACTERISTICS

Test Conditions

DBVDD = 3.3V, DCVDD = 3.3V, T_A = +25°C, unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT			
Digital Logic Levels (all digital input or output pins) – CMOS Levels									
Input HIGH level	V _{IH}		DBVDD×0.7			V			
Input LOW level	V _{IL}				DBVDD×0.3	V			
Output HIGH level	V _{OH}	source current = 2mA	DBVDD×0.9						
Output LOW level	V _{OL}	sink current = 2mA			DBVDD×0.1				
Clock Frequency									
Master clock (XTLIN pin)				24.576		MHz			
AC'97 bit clock (BIT_CLK pin)				12.288		MHz			
AC'97 sync pulse (SYNC pin)				48		kHz			

Note:

1. All audio and non-audio sample rates and other timing scales proportionately with the master clock.

2. For signal timing on the AC-Link, please refer to the AC'97 specification (Revision 2.2)

HEADPHONE / SPEAKER OUTPUT THD VERSUS POWER

POWER CONSUMPTION

The power consumption of the WM9712L depends on the following factors.

- Supply voltages: Reducing the supply voltages also reduces digital supply currents, and therefore results in significant power savings especially in the digital sections of the WM9712L.
- Operating mode: Significant power savings can be achieved by always disabling parts of the WM9712L that are not used (e.g. audio ADC, DAC, touchpanel digitiser).

Mode Description	26h 14:8	24h 15:0	Other Settings	A	VDD	DC	VDD	DB	VDD	Total Power
			Ŭ	V	I (mA)	V	I (mA)	V	I (mA)	(mW)
OFF (lowest possible power)	1111111	011111111111111111	58h, SVD = 1	3.3	0.0005	3.3	0	3.3	0	0.00165
Clocks stopped				2.5	0.0004	2.5	0	2.5	0	0.001
				1.8	0.0003	1.8	0	1.8	0	0.00054
LPS (Low Power Standby)	1111111	011111111111111111		3.3	0.005	3.3	0	3.3	0	0.0165
VREF maintained using 1MOhm string				2.5	0.004	2.5	0	2.5	0	0.01
				1.8	0.003	1.8	0	1.8	0	0.0054
Standby Mode (ready to playback)	1110111	011111111111111111		3.3	0.56	3.3	0	3.3	0	1.848
VREF maintained using 50kOhm string				2.5	0.37	2.5	0	2.5	0	0.925
				1.8	0.241	1.8	0	1.8	0	0.4338
"Idle" Mode	1100111	0111111111111111111		3.3	1.1	3.3	0	3.3	0	3.63
VREF maintained using 50kOhm string				2.5	0.76	2.5	0	2.5	0	1.9
use LPS mode instead, if possible				1.8	0.508	1.8	0	1.8	0	0.9144
Touchpanel only (waiting for pen-down)	1101111	0111111111111111111	76h = 0C00h	3.3	0.05	3.3	1.301	3.3	3.26	15.2163
AC-Link running			78h = 0001h	2.5	0.02	2.5	0.883	2.5	2.1	7.5075
				1.8	0.009	1.8	0.571	1.8	1.41	3.582
I ouchpanel only (continuous conversion)	1001111	01111111111111111111	76h = 0C00h	3.3	0.08	3.3	5.85	3.3	2.67	28.38
93.75 points per second			78h = C001h	2.5	0.04	2.5	3.922	2.5	2.1	15.155
Dhana Oall an iar han daharan (arana salar	0440044	044440004040404400		1.8	0.027	1.8	2.87	1.8	1.41	7.7526
Phone Call - using headphone / ear speaker	0110011	011110001010101100	UEN, DIT $7 = 1$	3.3	2.36	3.3	0	3.3	0	7.788
AC Link standed			(mic gain boost)	2.5	1.838	2.5	0	2.5	0	4.595
AC-LINK Stopped	1110011	0111101100110100	056 647 - 4	1.8	1.218	1.0	0	1.8	0	2.1924
Phone Call - using loudspeaker	1110011	0111101100110100	OEII, DIL 7 = 1	3.3	2.385	3.3	0	3.3	0	1.8705
AC-LINK Stopped			(Inic gain boost)	2.0	1.037	2.0	0	2.0	0	4.5925
Becard from mone microphone	1000110	01101011111111111	0Eb bit 7 = 1	1.0	1.210	1.0	11.21	1.0	2.6	2.1924
	1000110	01101011111111111	(min gain head)	3.3	3.27	3.3	7 70	3.3	2.0	21 425
all analogue outputs disabled			(The gain boost)	1.0	1 939	1.0	5.21	1.0	2.15	15 2244
Record phone call	0000000	0000000010001000	0 Eb. bit 7 = 1	3.3	9.461	3.3	12.21	3.3	2.62	80 1033
hoth sides mixed to mono	0000000	0000000010001000	(mic gain boost)	2.5	7 46	2.5	8 552	2.5	2.02	45 28
call using headphone / ear speaker			(inite gain boost)	1.8	5 3 1 8	1.8	5 700	1.8	1 48	22 6746
DAC Playback - using loudspeaker	1000001	0001111101110111		3.3	3 45	3.3	9 884	3.3	2.6	52 5822
Bito Flayback doing loadopeaker	1000001			2.5	2 549	2.5	6 755	2.5	2.0	28.51
				1.8	1 738	1.8	4 606	1.8	1 4 1	13 9572
DAC Playback - using headphone	0000001	0001110011101111		3.3	3.62	3.3	9.8	3.3	2.6	52,866
				2.5	2.71	2.5	6.78	2.5	2.1	28,975
				1.8	1.748	1.8	4.606	1.8	1.47	14.0832
DAC Playback - to Line-out	0000001	0001110011110111		3.3	3.62	3.3	9.8	3.3	2.6	52.866
· · · · · · · · · · · · · · · · · · ·				2.5	2.71	2.5	6.78	2.5	2.1	28,975
	1			1.8	1.748	1.8	4.606	1.8	1.41	13.9752
Maximum Power (everything on)	0000000	000000000000000000000000000000000000000	0Eh, bit 7 = 1	3.3	9.593	3.3	12.26	3.3	2.62	80.7609
			(mic gain boost)	2.5	7.37	2.5	8.563	2.5	2.12	45.1325
			, ,	1.8	5.388	1.8	5.8	1.8	1.48	22.8024

Table 1 Supply Current Consumption

Notes:

- 1. All figures are at $T_A = +25^{\circ}$ C, audio sample rate fs = 48kHz, with zero signal (quiescent).
- 2. The power dissipated in the headphone, speaker and touchpanel is not included in the above table.

DEVICE DESCRIPTION

INTRODUCTION

The WM9712L is designed to meet the mixed-signal requirements of portable and wireless computer systems. It includes audio recording and playback, touchpanel digitisation, battery monitoring, auxiliary ADC and GPIO functions, all controlled through a single 5-wire AC-Link interface.

SOFTWARE SUPPORT

The basic audio features of the WM9712L are software compatible with standard AC'97 device drivers. However, to better support the touchpanel and other additional functions, Wolfson Microelectronics supplies custom device drivers for selected CPUs and operating systems. Please contact your local Wolfson Sales Office for more information.

AC'97 COMPATIBILITY

The WM9712L uses an AC'97 interface to communicate with a microprocessor or controller. The audio and GPIO functions are largely compliant with AC'97 Revision 2.2. The following **differences** from the AC'97 standard are noted:

- Pinout: The function of some pins has been changed to support device specific features. The PHONE and PCBEEP pins have been moved to different locations on the device package.
- Package: The package for the WM9712L is a 7×7mm leadless QFN package.
- Audio mixing: The WM9712L handles all the audio functions of a smartphone, including audio playback, voice recording, phone calls, phone call recording, ring tones, as well as simultaneous use of these features. The AC'97 mixer architecture does not fully support this. The WM9712L therefore uses a modified AC'97 mixer architecture with three separate mixers.
- Tone Control, Bass Boost and 3D Enhancement: These functions are implemented in the digital domain and therefore affect only signals being played through the audio DACs, not all output signals as stipulated in AC'97.

Some other functions are additional to AC'97:

- On-chip BTL loudspeaker driver
- On-chip BTL driver for ear speaker (phone receiver)
- Auxiliary mono DAC for ring tones, system alerts etc.
- Touchpanel controller
- Auxiliary ADC Inputs
- 2 Analogue Comparators for Battery Alarm
- Programmable Filter Characteristics for Tone Control and 3D Enhancement

Figure 1 Audio Paths Overview

PD, Rev 4.6, November 2011

AUDIO INPUTS

section.

The following sections give an overview of the analogue audio input pins and their function. For more information on recommended external components, please refer to the "Applications Information"

LINE INPUT

The LINEINL and LINEINR inputs are designed to record line level signals, and/or to mix into one of the analogue outputs.

Both pins are directly connected to the record selector. The record PGA adjusts the recording volume, controlled by register 1Ch or by the ALC function.

For analogue mixing, the line input signals pass through a separate PGA, controlled by register 10h. The signals can be routed into all three output mixers (headphone, speaker and phone). Each LINEIN-to-mixer path has an independent mute bit. When the line inputs are not used, the line-in PGA can be switched off to save power (see "Power Management" section).

LINEINL and LINEINR are biased internally to the reference voltage VREF. Whenever the inputs are muted or the device placed into standby mode, the inputs remain biased to VREF using special antithump circuitry to suppress any audible clicks when changing inputs.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10h	12:8	LINEINL	01000	LINEINL input gain
		VOL	(0dB)	00000: +12dB
				(1.5dB steps)
				11111: -34.5dB
	4:0	LINEINR	01000	LINEINR input gain
		VOL	(0dB)	similar to LINEINLVOL
	15	L2H	1	Mute LINEIN path to headphone mixer
				1: Mute, 0: No mute (ON)
	14	L2S	1	Mute LINEIN path to speaker mixer
				1: Mute, 0: No mute (ON)
	13	L2P	1	Mute LINEIN path to phone mixer
				1: Mute, 0: No mute (ON)

Table 2 Line Input Control

MICROPHONE INPUT

The MIC1 and MIC2 inputs are designed for direct connection to single-ended mono, stereo or differential mono microphone. If the microphone is mono, the same signal appears on both left and right channels. In stereo mode, MIC1 is routed to the left and MIC2 to the right channel.

For voice recording, the microphone signal is directly connected to the record selector. The record PGA adjusts the recording volume, controlled by register 1Ch or by the ALC function.

For analogue mixing, the signal passes through a separate PGA, controlled by register 0Eh. The microphone signal can be routed into the phone mixer (for normal phone call operation) and/or the headphone mixer (using register 14h, see "Audio Mixers / Sidetone Control" section), but not into the speaker mixer (to prevent acoustic feedback from the speaker into the microphone). When the microphone inputs are not used, the microphone PGA can be switched off to save power (see "Power Management" section).

MIC1 and MIC2 are biased internally to the reference voltage VREF. Whenever the inputs are muted or the device placed into standby mode, the inputs remain biased to VREF using special anti-thump circuitry to suppress any audible clicks when changing inputs.

It is also possible to use the LINEINL and LINEINR pins as a second differential microphone input. This is achieved by setting the DS bit (register 5Ch, bit 11) to '1'. This disables the line-in audio paths and routes the signal from LINEINL and LINEINR through the differential mic path, as if it came from the MIC1 and MIC2 pins. Only one differential microphone be used at a time. The DS bit only has an effect when MS = 01 (differential mode).

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESC	RIPTION
0Eh	14	M12P	1	Mute I	MIC1 path to phone mixer
Mic Volume				1: Mut	te, 0: No mute (ON)
	13	M22P	1	Mute I	MIC2 path to phone mixer
				1: Mut	te, 0: No mute (ON)
	12:8	LMICVOL	01000	Left m	icrophone volume
			(0dB)	Only u	used when MS = 11
				Simila	r to MICVOL
	7	20dB	0	Microp	phone gain boost (Note 1)
				1: 20d	B boost ON
				0: No	boost (0dB gain)
	6:5	MS	00	Microp	phone mode select
				00	Single-ended mono (left)
					left = right = MIC1 (pin 21)
					Volume controlled by MICVOL
				01	Differential mono mode
					left = right = MIC1 – MIC2
					Volume controlled by MICVOL
				10	Single-ended mono (right)
					left = right = MIC2 (pin 22)
					Volume controlled by MICVOL
				11	Stereo mode
					MIC1 = left, MIC2 = right
					Left Volume controlled by LMICVOL
					Right volume controlled by MICVOL
	4:0	MICVOL	01000	Microp	phone volume to mixers
			(0dB)	00000	: +12dB
				(1.5	5dB steps)
				11111	:-34.5dB
5Ch	8	DS	0	Differe	ential Microphone Select
Additional				0 : Us	e MIC1 and MIC2
Analogue Functions				1: Use	ELINEL and LINER (Note 2)

Table 3 Microphone Input Control

Note:

- 1. The 20dB gain boost acts on the input to the phone mixer only. A separate microphone boost for recording can be enabled using the BOOST bit in register 1Ah.
- 2. When the LINEL and LINER are selected for differential microphone select then the MIC1 and MIC2 input pins become disabled, these signals can therefore not be routed internally to the device.

MICROPHONE BIAS

The MICBIAS output (pin 28) provides a low noise reference voltage suitable for biasing electret type microphones and the associated external resistor biasing network. The internal MICBIAS circuitry is shown below. Note that the maximum source current capability for MICBIAS is 3mA. The external biasing resistors and microphone cartridge therefore must limit the MICBIAS current to 3mA.

PD, Rev 4.6, November 2011

Figure 2 Microphone Bias Schematic

PHONE INPUT

Pin 20 (PHONE) is a mono, line level input designed to connect to the receive path of a telephony device.

The pin connects directly to the record selector for phone call recording (Note: to record both sides of a phone call, one ADC channel should record the PHONE signal while the other channel records the MIC signal). The RECVOL PGA adjusts the recording volume, controlled by register 1Ch or by the ALC function.

To listen to the PHONE signal, the signal passes through a separate PGA, controlled by register 0Ch. The signal can be routed into the headphone mixer (for normal phone call operation) and/or the speaker mixer (for speakerphone operation), but not into the phone mixer (to prevent forming a feedback loop). When the phone input is not used, the phone-in PGA can be switched off to save power (see "Power Management" section).

PHONE is biased internally to the reference voltage VREF. Whenever the input is muted or the device placed into standby mode, the input remains biased to VREF using special anti-thump circuitry to suppress any audible clicks when changing inputs.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0Ch	15	P2H	1	Mute PHONE path to headphone mixer
Phone Input				1: Mute, 0: No mute (ON)
	14	P2S	1	Mute PHONE path to speaker mixer
				1: Mute, 0: No mute (ON)
	4:0	PHONE	01000	PHONE input gain
		VOL	(0dB)	00000: +12dB
				… (1.5dB steps)
				11111: -34.5dB

Table 4 Phone Input Control

PCBEEP INPUT

Pin 19 (PCBEEP) is a mono, line level input intended for externally generated signal or warning tones. It is routed directly to the record selector and all three output mixers, without an input amplifier. The signal gain into each mixer can be independently controlled, with a separate mute bit for each signal path.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0Ah	15	B2H	1	Mute PCBEEP path to headphone mixer
PCBEEP input				1: Mute, 0: No mute (ON)
	14:12	B2HVOL	010	PCBEEP to headphone mixer gain
			(0dB)	000: +6dB
				(3dB steps)
				111: -15dB
	11	B2S	1	Mute PCBEEP path to speaker mixer
				1: Mute, 0: No mute (ON)
	10:8	B2SVOL	010	PCBEEP to speaker mixer gain
			(0dB)	000: +6dB
				(3dB steps)
				111: -15dB
	7	B2P	1	Mute PCBEEP path to phone mixer
				1: Mute, 0: No mute (ON)
	6:4	B2PVOL	010	PCBEEP to phone mixer gain
			(0dB)	000: +6dB
				(3dB steps)
				111: -15dB

Table 5 PCBEEP Control

AUDIO ADC

The WM9712L has a stereo sigma-delta ADC to digitize audio signals. The ADC achieves high quality audio recording at low power consumption. The ADC sample rate can be controlled by writing to a control register (see "Variable Rate Audio"). It is independent of the DAC sample rate.

To save power, the left and right ADCs can be separately switched off using the PD11 and PD12 bits, whereas PR0 disables both ADCs (see "Power Management" section). If only one ADC is running, the same ADC data appears on both the left and right AC-Link slots.

HIGH PASS FILTER

The WM9712L audio ADC incorporates a digital high-pass filter that eliminates any DC bias from the ADC output data. The filter is enabled by default. For DC measurements, it can be disabled by writing a '1' to the HPF bit (register 5Ch, bit 3).

ADC SLOT MAPPING

By default, the output of the left audio ADC appears on slot 3 of the SDATAIN signal (pin 8), and the right ADC data appears on slot 4. However, the ADC output data can also be sent to other slots, by setting the ASS (ADC slot select) control bits as shown below.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
5Ch	1:0	ASS	00	ADC to slot mapping
Additional				00: Left = Slot 3, Right = Slot 4 (default)
Function				01: Left = Slot 7, Right = Slot 8
Control				10: Left = Slot 6, Right = Slot 9
				11: Left = Slot 10, Right = Slot 11
	3	HPF	0	High-pass filter disable
				0: Filter enabled (for audio)
				1: Filter disabled (for DC measurements)

Table 6 ADC Control

RECORD SELECTOR

The record selector determines which input signals are routed into the audio ADC. The left and right channels can be selected independently. This is useful for recording a phone call: one channel can be used for the RX signal and the other for the TX signal, so that both sides of the conversation are digitized.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
1Ah	14	BOOST	0	20dB Boost
Record				1: Boost ADC input signal by 20dB
Select				0 :No boost
	13:12	R2P	11	Record to phone path enable
				00: Left ADC and Right ADC to phone mixer
				01 : Left ADC to phone mixer
				10: Right ADC to phone imixer
				11 : Muted
	11	R2PBOOST	0	20dB Boost for ADC to phone signal
				1: Boost signal by 20dB
				0 :No boost
	10:8	RECSL	000	Left ADC signal source
				000: MIC* (pre-PGA)
				001-010: Reserved (do not use this setting)
				011: Speaker mix
				100: LINEINL (pre-PGA)
				101: Headphone Mix (left)
				110: Phone Mix
				111: PHONE (pre-PGA)
	2:0	RECSR	000	Right ADC signal source
				000: MIC* (pre-PGA)
				001-010: Reserved (do not use this setting)
				011: Speaker mix
				100: LINEINR (pre-PGA)
				101: Headphone Mix (right)
				110: Phone Mix
				111: PHONE (pre-PGA)

Table 7 Audio Record Selector

Note:

*In stereo mic mode, MIC1 is routed to the left ADC and MIC2 to the right ADC. In all mono mic modes, the same signal (MIC1, MIC2 or MIC1-MIC2) is routed to both the left and right ADCs. See "Microphone Input" section for details.

RECORD GAIN

The amplitude of the signal that enters the audio ADC is controlled by the Record PGA (Programmable Gain Amplifier). The PGA gain can be programmed either by writing to the Record Gain register, or by the Automatic Level Control (ALC) circuit (see next section). When the ALC is enabled, any writes to the Record Gain register have no effect.

Two different gain ranges can be implemented: the standard gain range defined in the AC'97 standard, or an extended gain range with smaller gain steps. The ALC circuit always uses the extended gain range, as this has been found to result in better sound quality.

The output of the Record PGA can also be mixed into the phone and/or headphone outputs (see "Audio Mixers"). This makes it possible to use the ALC function for the microphone signal in a smartphone application.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION		
1Ch	15	RMU	1	Mute Audio ADC (both	channels)	
Record Gain				1: Mute (OFF)		
				0: No Mute (ON)		
	14	GRL	0	Gain range select (left))	
				0: Standard (0 to 22.50	IB, 1.5dB step size)	
				1: Extended (-17.25 to +30dB, 0.75dB steps)		
	13:8	RECVOLL	000000	Record Volume (left)		
				Standard (GRL=0)	Extended (GRL=1)	
				XX0000: 0dB	000000: -17.25dB	
				XX0001: +1.5dB	000001: -16.5dB	
				(1.5dB steps)	(0.75dB steps)	
				XX1111: +22.5dB	111111: +30dB	
	7	ZC	0	Zero Cross Enable		
				0: Record Gain changes immediately		
				1: Record Gain change or after time-out	es when signal is zero	
	6	GRR	0	Gain range select (right)		
				Similar to GRL		
	5:0	RECVOLR	000000	Record Volume (right)		
				Similar to RECVOLL		

Table 8 Record Gain Register

AUTOMATIC LEVEL CONTROL

The WM9712L has an automatic level control that aims to keep a constant recording volume irrespective of the input signal level. This is achieved by continuously adjusting the PGA gain so that the signal level at the ADC input remains constant. A digital peak detector monitors the ADC output and changes the PGA gain if necessary.

Figure 3 ALC Operation

The ALC function is enabled using the ALCSEL control bits. When enabled, the recording volume can be programmed between –6dB and –28.5dB (relative to ADC full scale) using the ALCL register bits.

HLD, DCY and ATK control the hold, decay and attack times, respectively:

Hold time is the time delay between the peak level detected being below target and the PGA gain beginning to ramp up. It can be programmed in power-of-two (2ⁿ) steps, e.g. 2.67ms, 5.33ms, 10.67ms etc. up to 43.7s. Alternatively, the hold time can also be set to zero. The hold time only applies to gain ramp-up, there is no delay before ramping the gain down when the signal level is above target.

Decay (Gain Ramp-Up) Time is the time that it takes for the PGA gain to ramp up across 90% of its range (e.g. from -15B up to 27.75dB). The time it takes for the recording level to return to its target value therefore depends on both the decay time and on the gain adjustment required. If the gain adjustment is small, it will be shorter than the decay time. The decay time can be programmed in power-of-two (2ⁿ) steps, from 24ms, 48ms, 96ms, etc. to 24.58s.

Attack (Gain Ramp-Down) Time is the time that it takes for the PGA gain to ramp down across 90% of its range (e.g. from 27.75dB down to -15B gain). The time it takes for the recording level to return to its target value therefore depends on both the attack time and on the gain adjustment required. If the gain adjustment is small, it will be shorter than the attack time. The attack time can be programmed in power-of-two (2ⁿ) steps, from 6ms, 12ms, 24ms, etc. to 6.14s.

When operating in stereo, the peak detector takes the maximum of left and right channel peak values, and any new gain setting is applied to both left and right PGAs, so that the stereo image is preserved. However, the ALC function can also be enabled on one channel only. In this case, only one PGA is controlled by the ALC mechanism, while the other channel runs independently with its PGA gain set through the control register.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
62h	15:14	ALCSEL	00	ALC function select
ALC / Noise			(OFF)	00 = ALC off (PGA gain set by register)
Gate Control				01 = Right channel only
				10 = Left channel only
				11 = Stereo (PGA registers unused)
				Note: Ensure that RECVOLL and RECVOLR
				settings (reg. 1Ch) are the same before
				entering this mode
	13:11	MAXGAIN	111	PGA gain limit for ALC
			(+30dB)	111 = +30dB
			. ,	110 = +24dB
				(6dB steps)
				001 = -6dB
				000 = -12dB
	8	ALCZC	0	ALC Zero Cross enable (overrides ZC bit in
	0	7.2020	0	register 1Ch)
				0: PGA Gain changes immediately
				1: PGA Gain changes when signal is zero or
				after time-out
	9:10	ZC	11	Programmable zero cross timeout
		TIMEOUT		11 2 ¹⁷ x MCLK period
				10 2 ¹⁶ x MCLK period
				01 2 ¹⁵ x MCLK period
				00 2 ¹⁴ x MCLK period
60h	15:12	ALCL	1011	ALC target – sets signal level at ADC input
ALC Control			(-12dB)	0000 = -28.5dB FS
			` ,	0001 = -27.0dB FS
				(1.5dB steps)
				1110 = -7.5dB ES
				1111 = -6dB FS
	11.8	нгр	0000	ALC hold time before gain is increased
	11.0	TILD	(0ms)	All O hold time before gain is increased.
			(0113)	0000 = 0005
				0010 = 5.32mg
				(time doubles with even (step))
				(time doubles with every step)
	7.4	DOV	0011	
	7:4	DCY	(100	ALC decay (gain ramp-up) time
			(192ms)	0000 = 24ms
				0001 = 48ms
				0010 = 96ms
				(time doubles with every step)
				1010 or higher = 24.58s
	3:0	ATK	0010	ALC attack (gain ramp-down) time
			(24ms)	0000 = 6ms
				0001 = 12ms
				0010 = 24ms
				(time doubles with every step)
				1010 or higher = 6.14s

Table 9 ALC Control

MAXIMUM GAIN

The MAXGAIN register sets the maximum gain value that the PGA can be set to whilst under the control of the ALC. This has no effect on the PGA when ALC is not enabled.

PEAK LIMITER

To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes a limiter function. If the ADC input signal exceeds 87.5% of full scale (-1.16dB), the PGA gain is ramped down at the maximum attack rate (as when ATK = 0000), until the signal level falls below 87.5% of full scale. This function is automatically enabled whenever the ALC is enabled.

(Note: If ATK = 0000, then the limiter makes no difference to the operation of the ALC. It is designed to prevent clipping when long attack times are used).

NOISE GATE

When the signal is very quiet and consists mainly of noise, the ALC function may cause "noise pumping", i.e. loud hissing noise during silence periods. The WM9712L has a noise gate function that prevents noise pumping by comparing the signal level at the input pins (i.e. before the record PGA) against a noise gate threshold, NGTH. Provided that the noise gate function is enabled (NGAT = 1), the noise gate cuts in when:

• Signal level at ADC [dB] < NGTH [dB] + PGA gain [dB] + Mic Boost gain [dB]

This is equivalent to:

Signal level at input pin [dB] < NGTH [dB]

The PGA gain is then held constant (preventing it from ramping up as it normally would when the signal is quiet). If the NGG bit is set, the ADC output is also muted when the noise gate cuts in.

The table below summarises the noise gate control register. The NGTH control bits set the noise gate threshold with respect to the ADC full-scale range. The threshold is adjusted in 1.5dB steps. Levels at the extremes of the range may cause inappropriate operation, so care should be taken with set–up of the function. Note that the noise gate only works in conjunction with the ALC function, and always operates on the same channel(s) as the ALC (left, right, both, or none).

		1		
REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
62h	7	NGAT	0	Noise gate function enable
ALC / Noise				1 = enable
Gate Control				0 = disable
	5	NGG	0	Noise gate type
				0 = PGA gain held constant
				1 = mute ADC output
	4:0	NGTH(4:0)	00000	Noise gate threshold
				00000: -76.5dBFS
				00001: -75dBFS
				1.5 dB steps
				11110: -31.5dBFS
				11111: -30dBFS

Table 10 Noise Gate Control

AUDIO DACS STEREO DAC

The WM9712L has a stereo sigma-delta DAC that achieves high quality audio playback at low power consumption. Digital tone control, adaptive bass boost and 3-D enhancement functions operate on the digital audio data before it is passed to the stereo DAC. (Contrary to the AC'97 specification, they have no effect on analogue input signals or signals played through the auxiliary DAC. Nevertheless, the ID2 and ID5 bits in the reset register, 00h, are set to '1' to indicate that the WM9712L supports tone control and bass boost.)

The DAC output has a PGA for volume control. The DAC sample rate can be controlled by writing to a control register (see "Variable Rate Audio"). It is independent of the ADC sample rate. The left and right DACs can be separately powered down using the PD13 and PD14 control bits, whereas the PR1 bit disables both DACs (see "Power Management" section).

STEREO DAC VOLUME

The volume of the DAC output signal is controlled by a PGA (Programmable Gain Amplifier). It can be mixed into the headphone, speaker and phone output paths (see "Audio Mixers").

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
18h	15	D2H	1	Mute DAC path to headphone mixer
DAC				1: Mute, 0: No mute (ON)
Volume	14	D2S	1	Mute DAC path to speaker mixer
				1: Mute, 0: No mute (ON)
	13	D2P	1	Mute DAC path to phone mixer
				1: Mute, 0: No mute (ON)
	12:8	DACL	01000	Left DAC Volume
		VOL	(0dB)	00000: +12dB
				(1.5dB steps)
				11111: -34.5dB
	4:0	DACR	01000	Right DAC Volume
		VOL	(0dB)	similar to DACLVOL
5Ch	15	AMUTE	0	Read-only bit to indicate auto-muting
Additional				1: DAC auto-muted
Functions				0: DAC not muted
(1)	7	AMEN	0	DAC Auto-Mute Enable
				1: Automatically mutes analogue output of stereo DAC if digital input is zero
				0: Auto-mute OFF

Table 11 Stereo DAC Volume Control

