
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Photon Development Guide

Introduction

Particle’s Photon Development Board is an awesomely powerful platform

for projects that require WiFi and Internet-connectivity. Whether you’re

creating the next, great, IoT project, or just want an easy to use, over-the-

air-programmable ARM Cortext M3 development board, the Photon is an

excellent foundation.

As with any microcontroller platform, there is no shortage of routes you can

take to develop firmware for the Photon. There is a web-based IDE, which

make it easy to share and import import code and program your Photon

remotely. There’s a pre-configured local IDE, which shares many of the

online IDE’s advantages, but allows you to keep code stored on your hard

drive. Or there are the more “hardcore” ARM development environments,

which, while more complicated, can provide complete control over the

contents of your Photon’s program memory.

Covered In This Tutorial

Photon Kit
 KIT-13345

 9

Page 1 of 13

The purpose of this tutorial is provide a quick overview of the options you

have when your developing firmware for the Photon. The online Build IDE is

easy, but it’s not for everyone – that shouldn’t stop anyone from getting a

chance to use this powerful, cost-effective WiFi development platform.

This tutorial is split into a few sections. Navigate using the menu on the

right, or click below to skip straight to the section you’re most interested in:

� Particle Build – A beginner friendly, browser-based, online IDE

hosted on Particle.io.

� Particle Dev – An offline editor that allows you to locally store your

source code, but still requires Internet connectivity for compiling and

flashing code to your Photon.

� ARM GCC and DFU Bootloading – The heart of the Photon is an

STM32 ARM microcontroller, so if you already have an ARM IDE set

up, the Photon’s open-source firmware will make it easy to port to the

Photon. Plus, because the Photon has a built-in USB bootloader,

loading the code can take place entirely offline too!

Particle Build (Online)

The Particle Build IDE is an always-online, browser-based portal where

your Photon code can be edited, saved, and shared. This cloud-based IDE

handles code compilation and flashes the built binaries to your Photon

over-the-air. You don’t even need your Photon next to you to update its

program!

To load the Build IDE head over to build.particle.io.

OPEN THE BUILD IDE!

If it’s your first time working with Build you may have to create an account,

otherwise log in to one you’ve already created.

Tour of the Build IDE

The majority of the Build IDE’s window is taken up by your code view – as it

should be. To navigate around the Build IDE there are buttons on the left

side of the window. Hover over any button to get a brief overview of what it

does – you’ll quickly become familiar with all of these icons.

� – Flash: Remotely upload your application code to the selected

device.

� – Verify: Compile your code and check for errors. Any

compilation errors will be listed under the code.

� – Save: Save early. Save often! This’ll save your app, which

you’ll be able to find under the Code view.

� – Code: This button will list of all of your saved apps. From

there you can click one to load it.

Page 2 of 13

� – Libraries: Opens a list of libraries – those you’ve contributed

and those added by the community.

� – Docs: Your go-to link for everything from the IDEs, to

firmware API, to hardware datasheets.

� – Devices: Click here to select which Photon (or Core, or

Electron) you want to flash code to.

� – Settings This is where you can log out, change your

password, or find your access token.

Selecting Your Device, Programming Blink

Before you can upload any code, you have to tell the IDE which of your

Photon’s you’d like to flash it to. Click on the “Devices” tab to see your list of

Photons, Cores, and P1 modules.

Mark the Photon you want to program with a yellow star, by clicking to the

left of the name. You can only select one device at a time.

After selecting your device, navigate over to the Code tab, and either

create a new App or select one of the examples. For your first try, the Blink

and LED example is always a good tool to test with.

Finally, click the Flash button in the top-left corner and watch the bottom

status-bar area of the IDE. The text down there will keep you up-to-date on

how the flash process is progressing. Your Photon’s RGB LED will also

display it’s status – it should go from breathing cyan (connected to cloud),

to blinking magenta (receiving flash), to blinking green (update done,

connecting to WiFi), back to breathing cyan.

Including Libraries

Particle’s community-contributed libraries allow you to easily plug proven

code to your application with the click of a button. Adding a library to an app

can be somewhat confusing the first time through, so here’s a quick

rundown.

Create an App – Before you can add a library to an application, you have

to have one created for it. Switch to the Code tab, and click Create New

App. Name it whatever you please, you can always change it. Press enter

to create the app.

Page 3 of 13

Find your Library – Navigate over to the Libraries tab. Then, using the

search box, find the library you’re looking for. For example, to add our

LSM9DS1 library to your app, search for “SparkFunLSM9DS1”.

Select the Library – Once you’ve found the library you’re looking for, click

on it to load up an overview of it. Here you’ll be able to view all of the

library’s contents, and even get some information about what the library

does.

Include in App – Finally, click the Include in App button, then click the

app it’s destined for. To verify, click Add to this App. Magically, an

#include statement will appear at the top of your app.

Note that simply copy/pasting the #include statement won’t actually add

the library to your app, you need to go through the “Include in App” process.

For more information on using the Particle Build IDE, check out Particle’s

Build documentation. There you can learn more about contributing libraries,

checking your memory usage, and using keyboard shortcuts.

Particle Dev (Half-Online, Half Offline)

Page 4 of 13

If you’re uneasy about leaving your hard work in the mysterious “cloud,” but

still want all of the benefits offered by Particle Build, Particle Dev is a great

middle-of-the-road option.

Like Build, Particle Dev takes care of your toolchain setup (compiler, linker,

etc.) and allows you to program remotely, plus you get the added benefit of

keeping all of your source code locally saved to your machine.

For the most part Particle Dev is still an online IDE. Your code is stored

locally, but the “cloud” is still required to compile. You’ll need to be

connected to the Internet to get the full use out of it. (There may be hope

though: in Particle’s words “This is not an offline development tool, yet.”)

Download Particle Dev

Particle Dev is currently available for Mac and Windows. Head over to

particle.io/dev to download it.

DOWNLOAD PARTICLE DEV

Follow along with the install wizard to install it on your Windows machine.

Mac users can unzip the “Particle Dev” application, and stick it in your

applications folder.

Getting Started with Particle Dev

If you’ve tested the waters with Particle Build, you should already be

somewhat familiar with Particle Dev’s menu icons. Hover over any icon to

get a succinct description of what it does.

The first time you load up Particle Dev, you’ll have to log in to your Particle

account. That will give you access to flash your Photons and Cores. Go

“Particle” > “Log in to Particle Cloud…” or click “Click to log in to Particle

Cloud…” to set it up.

Open a Project Folder

Now it’s time to write some code! Projects in Particle Dev are folder-based.

If you’d like to follow along with an example click the button below to

download a simple “Blink” app – unzip it anywhere you’d like.

DOWNLOAD THE BLINK EXAMPLE FOLDER

Begin by opening a project using the File > Open Folder… menu option

(on the Mac version select “Open Project Folder”). Navigate into a folder,

and click “Select folder” (or “Open” on Mac).

Page 5 of 13

The contents of your project folder will be displayed to the left of the text

editor window. Click on any file to view its contents.

You can edit this code just as if you were in the Build IDE. Click the

checkmark icon (“Compile and show errors if any”) to try compiling your

code. If it builds, you’ll see a “Success!” message down at the bottom of the

window.

Select a Device and Flash

Once you’ve gotten your application code to the point where you’re ready to

upload it save.

Watch out! Particle Dev doesn't automatically save before compiling

and uploading your code. Make sure you save before clicking

"Flash" to make sure your Photon gets the latest version of your

code.

Then select a device by going to Particle > Select device. If your Photon is

connected to Particle Cloud, there should be a comfortingly pulsing teal dot

next to it.

With your device selected, and code in a compilable state, click the Flash

icon (“Compile and upload code using cloud”).

Page 6 of 13

The status of your code upload will be displayed in the bottom of the IDE.

As code is being flashed, your Photon should briefly blink magenta before

transitioning into its new application.

Using Particle Libraries

It’ll take a few extra clicks and drags to add a library to your Particle Dev

project folder – it’s not quite as easy as Particle Build.

To begin, you’ll need to download the library. Most Particle libraries

should already be hosted on GitHub, so find the library you want and view it

there. You can find SparkFun’s list of Particle libraries here.

On the GitHub repository page, click “Download ZIP” to get your own

copy of the library.

Unzip the library. Then you’ll need to do some surgery on the contents.

Grab the library’s source files – they should be in the “firmware” directory

and end with either a .cpp or .h.

Don’t grab the “examples” folder! If you want to use one of the examples as

your main application source file, drag it into your project folder as well.

Then open your main source file back up in Particle Dev, and add the

necessary #include statement.

Click the checkmark icon to compile and make sure everything’s still happy,

and keep on coding!

There’s a whole lot more to the Particle Dev IDE. It’s fully customizable –

make sure you check out the “Settings” tab. It has an integrated Serial

Monitor and Spark Variable viewer. Make sure you check out Particle’s Dev

documentation to learn more about the IDE.

ARM GCC and the DFU Bootloader

Page 7 of 13

(Offline)

At its heart, the Photon is just an STM32F205 ARM processor with a

Broadcom WiFi chip built in. Developing firmware for it doesn’t have to be

different from any other ARM processor. Plus, because the Photon is

completely open source, you have access to all of the firmware to help get

you started.

Get The Tools

This is a much more advanced approach than the previous two

environments. You’ll need to set up a toolchain on your computer to be able

to build firmware and flash your Photon.

� GNU Tools for ARM – Primarily, this includes ARM GCC – an open-

source tool for compiling C and C++ files for ARM processors.

◦ Make sure your ARM-gcc is up to date. Type the

armnoneeabigcc version command to get a read on

your gcc’s version – make sure it’s at least 4.9.3.

� Make – To work the makefile magic, you need the “make” tool

installed. Mac and Linux users should already have this wonderful

tool available, Windows users may need to install it though.

� dfu-util – The Photon has a USB DFU (device firmware upgrade)

bootloader, which allows you to flash code locally. For your computer

to communicate with the bootloader, you’ll need this utility.

� Windows users may also need to install MinGW and MSYS to get

an assortment of programming tools and a simple shell interface.

You may also need to do some re-ordering of your machine’s PATH

environment variable. This post on Particle’s forum was a big help in

getting my Windows machine operational, it may help you too.

Download the Photon Firmware

Particle is awesomely open-source, everything from the Photon’s hardware

layout to the firmware is available to download, view, and modify. You can

find it all on their GitHub page.

The Photon’s latest firmware release is hosted in the latest branch of the

firmware repo. You can download the firmware by either clicking “Download

Zip” on that GitHub page, or you can use git via the command line. (Visit

git-scm.com to download the git tool.)

git clone https://github.com/spark/firmware.git

cd firmware

git checkout latest

Update the Photon Firmware

Before you can begin flashing an application of your own design, you’ll

need to update the Photon’s firmware. It’s easily done, but requires some

patience.

Before you type any commands, put your Photon in DFU mode: hold down

both the SETUP and RESET buttons. Then release RESET, but hold

SETUP until you see the RGB blink yellow. That means the Photon is in

DFU mode.

Page 8 of 13

Attention Windows Users: Windows users may have to install the

Photon's USB driver for DFU mode. Download Zadig and follow along

with this tutorial.

To verify that the Photon is in DFU mode and dfu-util is installed properly,

try the dfu-util -l command. You should see a response like this:

Found DFU: [2b04:d006] devnum=0, cfg=1, intf=0, alt=0, name="@Internal Flash /0x08000000/03*016Ka,01*016Kg,01*064Kg,0

Found DFU: [2b04:d006] devnum=0, cfg=1, intf=0, alt=1, name="@DCT Flash /0x00000000/01*016Kg"

The important parts there are the hex values inside the braces – the USB

VID and PID, which should be 2b04 and d006 for the Photon.

Two commands are required to build and flash the firmware: switch to the

modules directory then call make with a few parameters to build and

upload the firmware:

make PLATFORM=photon clean all programdfu

Then sit tight as make and then dfu-util work their magic. Be warned this

may take a long while.

Navigating the Photon Firmware

The Photon’s firmware code base is massive, but it’s well sorted. Unless

you want to mess with really low-level stuff, you can ignore most

directories. The user directory is where the Photon’s application code is

stored.

Page 9 of 13

The “src” directory contains the default application to be built. You can

either put your application code in here (overwriting “application.cpp”) or

create a directory of your own in “applications”.

There are some example applications in the “applications” folder, including

tinker – the default application every Photon ships with.

As an example of our own, lets create a “blink” directory in

“user/applications”. Then create a file called “application.cpp”.

To code up a simple blink app, copy and paste this into “application.cpp”:

#include "application.h"

int ledPin = D7;

void setup()

{

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 digitalWrite(ledPin, HIGH);

 delay(250);

 digitalWrite(ledPin, LOW);

 delay(250);

}

Don’t forget to #include "application.h" , other than that your code will

look a lot like any other Arduino/Photon sketch. Easy enough. Now the hard

(er) part – compiling.

Compiling with Make Magic

To build your firmware you’ll need to call make , while configuring a few

variables at the same time. You need to tell make what platform you’re

compiling for (we’re assuming its a Photon, but it could also be a Core or

P1 module). And you also need to tell it which app to make.

First, change directories to the main folder. Then type this:

make PLATFORM=photon APP=blink

The APP=blink bit will tell make to look for application code in the

“user/applications/blink” folder. There are more make options available as

well, check out Particle’s build documentation.

Your first build may take some time, but, now that most everything is built,

successive make ’s should go much faster. A successful build should yield a

response like this:

text data bss dec hex filename

1956 44 236 2236 8bc ../../../build/target/use

rpart/platform6mlto/applications/blink.elf

The final output of our build will be:

firmware/build/target/userpart/platform6mlto/applications/blink.bin .

That’s what all this work was for. That’s what we’ll be flashing with

dfuutil .

Compile Locally, Flash Locally (Over USB)

Page 10 of 13

Now that you have a .bin file – cryptic instruction code that only the Photon

will understand – it’s time to send it over to the development board. This is

where you’ll need dfuutil .

Make sure you put your Photon in DFU mode again! Then use this

dfuutil command to upload your BIN file to the Photon’s application

memory:

dfuutil d 2b04:d006 a 0 i 0 s 0x80A0000:leave D ../buil
d/target/userpart/platform6m/blink.bin

Alternatively, you can make your life a bit easier by using the make

command to invoke dfu-util:

make PLATFORM=photon APP=blink programdfu

Compile Locally, Flash Remotely (With Particle
CLI)

Claiming control over your toolchain and source files doesn’t mean you

can’t enjoy the luxury of over-the-air programmability! Particle’s Command

Line Interface (Particle CLI) gives you command line access to all of their

cloud utilities.

Particle CLI, which uses node.js, is a multitool for the Photon. You can use

it to configure WiFi, list connected devices, compile code remotely, and –

pertinent to this section of the tutorial – flash code over-the-air.

After installing Particle CLI, you can use the particle flash command to

upload code you’ve compiled to your Photon remotely. All you need is the

name of your Photon and the compiled BIN file.

For example, to upload the blink.bin file we created earlier, send this

command (assuming you’re still in the “main” directory):

particle flash MY_PHOTON_NAME ../build/target/userpart/platfo
rm6m/blink.bin

Replace MY_PHOTON_NAME with that of your Photon, and it should quickly

transition from breathing cyan (connected to cloud), to blinking magenta

(flashing new application), to running your new application.

Adding Libraries

Adding a library to an app built with local gcc is a lot like adding a library

using Particle Dev.

Download your library of interest (usually it’ll be on GitHub). Then move the

library’s source files (excluding the “examples” folder) into your application

folder.

For example, if you want to use the Weather Shield library, copy the .cpp

and .h files, and stick them into your application folder.

Finally, #include the library in your main application file and compile away!

Page 11 of 13

Additional documentation on developing on Particle’s firmware with GCC

can be found in the README in Particle’s firmware repository.

Resources & Going Further

For exhaustive documentation on the Photon, head over to particle.io. Here

are a few links there that may be helpful:

� Particle Community Forum

� Particle Documentation Homepage

� Photon Datasheet

Now that you have a handle on the development environment, what are you

going to do with the Photon? Need some inspiration? Check out some of

these related tutorials:

Weather Station Wirelessly
Connected to
Wunderground
Build your own open source, official

Wunderground weather station that

updates every 10 seconds over Wifi

via an Electric Imp.

Pushing Data to
Data.SparkFun.com
A grab bag of examples to show off

the variety of routes your data can

take on its way to a

Data.SparkFun.com stream.

Photon IMU Shield Hookup
Guide
Learn how to use the SparkFun

Photon IMU Shield for your Photon

device which houses an on-board

LSM9DS1 system-in-a-chip that

houses a 3-axis accelerometer,

3-axis gyroscope, and 3-axis

magnetometer.

Photon Battery Shield
Hookup Guide
The Photon Battery Shield has

everything your Photon needs to run

off, charge, and monitor a LiPo

battery. Read through this hookup

guide to get started using it.

Photon Wearable Shield
Hookup Guide
Learn how to use the Photon

Wearable Shield for your next

projects!

Photon OLED Shield Hookup
Guide
The Photon OLED Shield has

everything you need to add a small

yet crisp OLED screen to your

Photon projects. This hookup guide

will show you how to get started.

Page 12 of 13

Page 13 of 13

10/22/2015https://learn.sparkfun.com/tutorials/photon-development-guide/all

	Contact us

