# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# WT41-E

DATA SHEET Tuesday, 08 October 2013 Version 1.4



## Copyright © 2000-2013 Bluegiga Technologies

All rights reserved.

Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual. Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed here at any time without notice and does not make any commitment to update the information contained here. Bluegiga's products are not authorized for use as critical components in life support devices or systems.

The WRAP is a registered trademark of Bluegiga Technologies

The *Bluetooth* trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies. All other trademarks listed herein are owned by their respective owners.

## **VERSION HISTORY**

| Version | Comment                                                                         |
|---------|---------------------------------------------------------------------------------|
| 1.0     | Release                                                                         |
| 1.1     | Power vs supply voltage figure added                                            |
| 1.2     | Typo corrections                                                                |
| 1.3     | Certification information updated                                               |
| 1.31    | Absolute maximum supply voltage 3.7V                                            |
| 1.32    | NCC certification info added. HCI30 removed from the ordering information list. |
| 1.33    | NCC labeling info added in Chinese                                              |
| 1.34    | Duplicate spurious emissions table removed                                      |
| 1.4     | MSL information added                                                           |

## TABLE OF CONTENTS

| 1 | С   | ering Information7                         |    |  |  |  |
|---|-----|--------------------------------------------|----|--|--|--|
| 2 | Ρ   | Pinout and Terminal Description            | 8  |  |  |  |
| 3 | Ε   | Electrical Characteristics                 | 11 |  |  |  |
|   | 3.1 | Absolute Maximum Ratings                   | 11 |  |  |  |
|   | 3.2 | 2 Recommended Operating Conditions         | 11 |  |  |  |
|   | 3.3 | PIO Current Sink and Source Capability     | 11 |  |  |  |
|   | 3.4 | Transmitter Performance For BDR            | 12 |  |  |  |
|   | 3   | 3.4.1 Radiated Spurious Emissions          | 13 |  |  |  |
|   | 3.5 | Receiver Performance                       | 13 |  |  |  |
|   | 3.6 | Current Consumption                        | 14 |  |  |  |
|   | 3.7 | Antenna Specification                      | 15 |  |  |  |
| 4 | Ρ   | Physical Dimensions                        | 16 |  |  |  |
| 5 | L   | _ayout Guidelines                          | 18 |  |  |  |
| 6 | U   | JART Interface                             | 19 |  |  |  |
|   | 6.1 | UART Bypass                                | 21 |  |  |  |
|   | 6.2 | 2 UART Configuration While Reset is Active | 21 |  |  |  |
|   | 6.3 | UART Bypass Mode                           | 21 |  |  |  |
| 7 | U   | JSB Interface                              | 22 |  |  |  |
|   | 7.1 | USB Data Connections                       | 22 |  |  |  |
|   | 7.2 | 2 USB Pull-Up resistor                     | 22 |  |  |  |
|   | 7.3 | USB Power Supply                           | 22 |  |  |  |
|   | 7.4 | Self-Powered Mode                          | 22 |  |  |  |
|   | 7.5 | Bus-Powered Mode                           | 23 |  |  |  |
|   | 7.6 | USB Suspend Current                        | 24 |  |  |  |
|   | 7.7 | USB Detach and Wake-Up Signaling           | 24 |  |  |  |
|   | 7.8 | B USB Driver                               | 25 |  |  |  |
|   | 7.9 | USB v2.0 Compliance and Compatibility      | 25 |  |  |  |
| 8 | S   | Serial Peripheral Interface (SPI)          | 26 |  |  |  |
| 9 | Ρ   | PCM Codec Interface                        | 27 |  |  |  |
|   | 9.1 | PCM Interface Master/Slave                 | 27 |  |  |  |
|   | 9.2 | 2 Long Frame Sync                          | 28 |  |  |  |
|   | 9.3 | Short Frame Sync                           | 28 |  |  |  |
|   | 9.4 | Multi-slot Operation                       | 29 |  |  |  |
|   | 9.5 | GCI Interface                              | 29 |  |  |  |
|   | 9.6 | Solots and Sample Formats                  | 30 |  |  |  |
|   | 9.7 | Additional Features                        | 31 |  |  |  |
|   | 9.8 | PCM_CLK and PCM_SYNC Generation            | 31 |  |  |  |

| 9.9   | PC       | M Configuration                       |
|-------|----------|---------------------------------------|
| 10    | I/O Pa   | rallel Ports                          |
| 10.1  | 1        | PIO Defaults                          |
| 11    | Reset    |                                       |
| 11.1  | 1        | Pin States on Reset                   |
| 12    | Certifi  | cations                               |
| 12.1  | 1        | Bluetooth                             |
| 12.2  | 2        | FCC and IC                            |
| 1     | 2.2.1    | FCC et IC                             |
| 12.3  | 3        | CE                                    |
| 12.4  | 1        | MIC Japan 41                          |
| 12.5  | 5        | KCC (Korea)                           |
| 12.6  | 6        | NCC Taiwan                            |
| 1     | 2.6.1    | NCC Taiwan labeling requirements      |
| 12.7  | 7        | Qualified Antenna Types for WT41-E 42 |
| 12.8  | 3        | Moisture Sensitivity Level (MSL) 43   |
| Conta | ct Infor | mation 44                             |



#### DESCRIPTION

WT41-E is a long range class 1, Bluetooth® 2.1 + EDR module. WT41-E is a highly integrated and sophisticated Bluetooth® module, containing all the necessary elements from Bluetooth® radio and a fully implemented protocol stack. Therefore WT41-E provides an ideal solution for developers who want to integrate Bluetooth® wireless technology into their design with limited knowledge of Bluetooth® and RF technologies. WT41-E is optimized for long range applications and since it contains a RF power amplifier, low noise amplifier and a u.fi connector for an external 2 dBi dipole antenna. With 115 dB radio budget WT41-E can reach over 1 km range in line off sight.

By default WT41-E module is equipped with powerful and easy-to-use iWRAP firmware. iWRAP enables users to access Bluetooth® functionality with simple ASCII commands delivered to the module over serial interface - it's just like a Bluetooth® modem.

#### **APPLICATIONS:**

- · Hand held terminals
- Industrial devices
- Point-of-Sale systems
- PCs
- Personal Digital Assistants (PDAs)
- Computer Accessories
- Access Points
- Automotive Diagnostics Units

#### FEATURES:

- Fully Qualified Bluetooth v2.1 + EDR end product
- CE qualified
- Modular certification for FCC, IC and KCC
- MIC Japan compatibility fully tested with ARIB STD-T66
- TX power : 19 dBm
- RX sensitivity : -92 dBm
- Higly efficient chip antenna, U.FL connector or RF pin
- Class 1, range up to 800 meters
- Industrial temperature range from -40°C to +85°C
- RoHS Compliant
- USB interface (USB 2.0 compatible)
- UART with bypass mode
- 6 x GPIO
- 1 x 8-bit AIO
- Support for 802.11 Coexistence
- Integrated iWRAP<sup>™</sup> Bluetooth stack or HCI firmware

# **1** Ordering Information

#### WT41-E-HCI



# 2 Pinout and Terminal Description



Figure 1: WT41-E pin out

|              | PIN<br>NUMBER                                  | PAD TYPE                         | DESCRIPTION                                                                         |  |  |
|--------------|------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|--|--|
| NC           | 1, 52                                          | Not connected                    | Pins 1 and 52 (GND) have been removed from the module.                              |  |  |
| RESET        | 33                                             | Input, weak internal pull-<br>up | Active low reset. Keep low for >5 ms to cause a reset                               |  |  |
| GND          | 2-10, 16,<br>23,24,26-<br>28, 30,<br>31,36,44- | GND                              | GND                                                                                 |  |  |
| RF           | 51                                             | RF output                        | RF output for WT41-N. For WT41-A<br>and WT41-E this pin is not connected            |  |  |
| RFGND 50 GND |                                                | GND                              | RF ground. Connected to GND internally to the module.                               |  |  |
| VDD_PA       | 11                                             | Supply voltage                   | Supply voltage for the RF power amplifier and the low noise amplifier of the module |  |  |
| VDD          | 32 Supply voltage                              |                                  | Supply voltage for BC4 and the flash<br>memory                                      |  |  |

Table 1: Supply and RF Terminal Descriptions

Bluegiga Technologies Oy

| PIO PORT PIN<br>NUMBER |    | PAD TYPE                                                             | DESCRIPTION                               |  |
|------------------------|----|----------------------------------------------------------------------|-------------------------------------------|--|
| PIO[2]                 | 12 | Bi-directional, programmamble<br>strength internal pull-down/pull-up | Programmamble input/output<br>line        |  |
| PIO[3]                 | 13 | Bi-directional, programmamble strength internal pull-down/pull-up    | Programmamble input/output<br>line        |  |
| PIO[4]                 | 29 | Bi-directional, programmamble strength internal pull-down/pull-up    | Programmamble input/output<br>line        |  |
| PIO[5]                 | 41 | Bi-directional, programmamble strength internal pull-down/pull-up    | Programmamble input/output<br>line        |  |
| PIO[6]                 | 34 | Bi-directional, programmamble strength internal pull-down/pull-up    | Programmamble input/output<br>line        |  |
| PIO[7]                 | 35 | Bi-directional, programmamble<br>strength internal pull-down/pull-up | Programmamble input/output<br>line        |  |
| AIO[1]                 | 43 | Bi-directional                                                       | Programmamble analog<br>input/output line |  |

#### **Table 2: GPIO Terminal Descriptions**

| PCM PIN<br>INTERFACE NUMBER |    | PAD TYPE                                           | DESCRIPTION             |  |
|-----------------------------|----|----------------------------------------------------|-------------------------|--|
| PCM_OUT                     | 25 | CMOS output, tri-state,<br>weak internal pull-down | Synchronous data output |  |
| PCM_IN                      | 20 | CMOS input, weak<br>internal pull-down             | Synchronous data input  |  |
| PCM_SYNC                    | 22 | Bi-directional, weak<br>internal pull-down         | Synchronous data sync   |  |
| PCM_CLK                     | 21 | Bi-directional, weak<br>internal pull-down         | Synchronous data clock  |  |

#### **Table 3: PCM Terminal Descriptions**

| UART<br>Interfaces | PIN<br>NUMBER | PAD TYPE                                                   | DESCRIPTION                      |
|--------------------|---------------|------------------------------------------------------------|----------------------------------|
| UART_TX            | 42            | CMOS output, tri-<br>state, with weak<br>internal pull-up  | UART data output, active high    |
| UART_RTS#          | 14            | CMOS output, tri-<br>state, with weak<br>internal pull-up  | UART request to send, active low |
| UART_RX            | 15            | CMOS input, tri-<br>state, with weak<br>internal pull-down | UART data input, active high     |
| UART_CTS#          | 19            | CMOS input, tri-<br>state, with weak<br>internal pull-down | UART clear to send, active low   |

Table 4: UART Terminal Descriptions

| USB Interfaces | PIN<br>NUMBER | PAD TYPE       | DESCRIPTION                                 |  |
|----------------|---------------|----------------|---------------------------------------------|--|
|                | 17            | Bidiroctional  | USB data plus with selectable internal 1.5k |  |
| 030+           |               | Diuli eccional | pull-up resistor                            |  |
| USB-           | 18            | Bidirectional  | USB data minus                              |  |

**Table 5: USB Terminal Descriptions** 

| SPI PIN<br>INTERFACE NUMBER |    | PAD TYPE                                                  | DESCRIPTION                                                |  |
|-----------------------------|----|-----------------------------------------------------------|------------------------------------------------------------|--|
| SPI_MOSI                    | 40 | CMOS input with weak<br>internal pull-down                | SPI data input                                             |  |
| SPI_CS#                     | 37 | CMOS input with weak<br>internal pull-up                  | Chip select for Serial Peripheral<br>Interface, active low |  |
| SPI_CLK                     | 38 | CMOS input with weak<br>internal pull-down                | SPI clock                                                  |  |
| SPI_MISO                    | 39 | CMOS output, tristate,<br>with weak internal pull<br>down | SPI data output                                            |  |

Table 6: Terminal Descriptions

# **3** Electrical Characteristics

# 3.1 Absolute Maximum Ratings

| Rating                  | Min     | Max     | Unit |
|-------------------------|---------|---------|------|
| Storage Temperature     | -40     | 85      | С°   |
| VDD_PA, VDD             | -0.4    | 3.7     | V    |
| Other Terminal Voltages | VSS-0.4 | VDD+0.4 | V    |

#### Table 7: Absolute Maximum Ratings

## 3.2 Recommended Operating Conditions

| Rating                      | Min | Max | Unit |
|-----------------------------|-----|-----|------|
| Operating Temperature Range | -40 | 85  | С°   |
| VDD_PA, VDD <sup>*)</sup>   | 3.0 | 3.6 | V    |

\*) VDD\_PA has an effect on the RF output power.

 Table 8: Recommended Operating Conditions

# 3.3 PIO Current Sink and Source Capability







# 3.4 Transmitter Performance For BDR

| RF Characetristics, VDD = 3.3V @ room |                           |     | Typ   | Max           | Bluetooth | Unit |
|---------------------------------------|---------------------------|-----|-------|---------------|-----------|------|
| temperature unless                    | IVIIII                    | чур | IVIAX | Specification | Unit      |      |
| maximum RF                            | 17                        | 19  | 20    | 20            | dBm       |      |
|                                       | vor tomporature range     |     |       | 1             |           | dD   |
| RF power variation o                  | ver temperature range     |     |       | 1             | -         | ив   |
| RF power variation ove                | r supply voltage range (* |     |       | 2             | -         | dB   |
| RF power variation over BT band       |                           |     | 0.5   | 2             | -         | dB   |
| RF power co                           | ntrol range (*            | -10 |       | 19            |           |      |
|                                       |                           |     |       |               |           |      |
| 20dB band width fo                    | or modulated carrier      |     | 942   |               | 1000      | kHz  |
|                                       | $F = F_0 \pm 2MHz$        |     |       | -20           | -20       |      |
| ACP (1                                | $F = F_0 \pm 3MHz$        |     |       | -40           | -40       |      |
|                                       | $F = F_0 > 3MHz$          |     |       | -40           | -40       |      |
| Drift rate                            |                           |     | 7     |               | +/-25     | kHz  |
| $\Delta F_{1avg}$                     |                           |     | 169   |               | 140<175   | kHz  |
| ΔF1 <sub>max</sub>                    |                           |     | 161   |               | 140<175   | kHz  |
| $\Delta F_{2avg}$                     | $/ \Delta F_{1avg}$       |     | 1.1   |               | >=0.8     |      |

Antenna gain 2.3dBi taken into account

## Table 9: Transmitter performance for BDR



Figure 3: Typical TX power as a function of VDD\_PA

Bluegiga Technologies Oy

# 3.4.1 Radiated Spurious Emissions

| Standard                       | Band / Frequency                      | Min<br>(AVG /<br>PEAK) | Typ<br>(AVG /<br>PEAK) | Max<br>(AVG /<br>PEAK) | Limit by the Standard<br>(AVG / PEAK) | Unit   |
|--------------------------------|---------------------------------------|------------------------|------------------------|------------------------|---------------------------------------|--------|
|                                | 2nd harmonic                          |                        | 52                     | 54/58                  | 54 / 74                               | dBuV/m |
|                                | 3rd harmonic                          |                        | 51                     | 54/58                  | 54 / 74                               | dBuV/m |
|                                | Band edge<br>2390MHz                  |                        | 50/60                  | 52/63                  | 54 / 74                               | dBuV/m |
| FCC part 15<br>transmitter     | Band edge<br>2483.5MHz                |                        | 52/65                  | 54/67                  | 54 / 74                               | dBuV/m |
| spurious<br>emissions          | Band edge<br>2400MHz<br>(conducted)   |                        | -50                    |                        | -20                                   | dBc    |
|                                | Band edge<br>2483.5MHz<br>(conducted) |                        | -58                    |                        | -20                                   | dBc    |
| ETSI EN 300 328<br>transmitter | Band edge<br>2400MHz                  |                        | -39                    | -36                    | -30                                   | dBm    |
| spurious                       | 2nd harmonic                          |                        | -41                    |                        | -30                                   | dBm    |
| emissions                      | 3rd harmonic                          |                        | -41                    |                        | -30                                   | dBm    |
| ETSI EN 300 328                | (2400 - 2479) MHz                     |                        | -                      |                        | -47                                   | dBm    |
| receiver spurious              | (1600 - 1653) MHz                     |                        | -52                    |                        | -47                                   | dBm    |

Measured from WT41-E evaluation board

| Table 10: Radiated spurious | emission for WT41-E |
|-----------------------------|---------------------|
|-----------------------------|---------------------|

## 3.5 Receiver Performance

Antenna gain not taken into account

| RF characteristis, VDD = 3.3V,<br>room temperature (** | Packet type | Min | Тур | Max | Bluetooth<br>Spefication | Unit |
|--------------------------------------------------------|-------------|-----|-----|-----|--------------------------|------|
|                                                        | DH1         |     | -92 |     | -70                      | dBm  |
|                                                        | DH3         |     | -92 |     |                          | dBm  |
|                                                        | DH5         |     | -91 |     |                          | dBm  |
|                                                        | 2-DH1       |     | -94 |     |                          | dBm  |
| Sensitivity for 0.1% BER                               | 2-DH3       |     | -93 |     |                          | dBm  |
|                                                        | 2-DH5       |     | -93 |     |                          | dBm  |
|                                                        | 3-DH1       |     | -88 |     |                          | dBm  |
|                                                        | 3-DH3       |     | -85 |     |                          | dBm  |
|                                                        | 3-DH5       |     | -84 |     |                          | dBm  |
| Sensitivity variation over                             |             |     |     |     |                          |      |
| temperature range                                      |             |     | TBD |     |                          |      |

#### Table 11: Receiver sensitivity

# 3.6 Current Consumption

| Opearation mode       | Peak (mA) | AVG (mA) |
|-----------------------|-----------|----------|
| Stand-by, page mode 0 | -         | 2.1      |
| TX 3DH5               | 100.5     | 77.6     |
| TX 2DH5               | 99.3      | 77.6     |
| TX 3DH3               | 98.1      | 71.1     |
| TX 2DH3               | 98.1      | 71.2     |
| TX 2DH1               | 98.7      | 51.6     |
| TX DH5                | 164       | 120      |
| TX DH1                | 166       | 67.3     |
| RX                    | 56.8      | 52.6     |
| Deep sleep            |           | 0.36     |
| Inquiry               | 169.3     | 58.7     |

Table 12: Current consumption

# 3.7 Antenna Specification

WT41-E is designed and qualified to be used with a 2.14 dBi dipole antenna. Any dipole antenna with the same or less gain can be used with WT41-E as far as the technical information of the antenna is provided for Bluegiga for approval. Any antenna approved by Bluegiga can be used with WT41-E without additional applications to FCC or IC. Table 19 on page 42 lists the antennas pre-approved by Bluegiga. Using an antenna of a different type (i.e. different radiation pattern) or higher gain will require a permissive change for the certifications. Please contact <a href="mailto:support@bluegiga.com">support@bluegiga.com</a> for details

# **4** Physical Dimensions



Figure 4: Physical dimensions (top view)



Figure 5: Dimensions for the RF pin (top view)

Bluegiga Technologies Oy



Figure 7: Recommended land pattern

# 5 Layout Guidelines

Use good layout practices to avoid excessive noise coupling to supply voltage traces or sensitive analog signal traces, such as analog audio signals. If using overlapping ground planes use stitching vias separated by max 3 mm to avoid emission from the edges of the PCB. Connect all the GND pins directly to a solid GND plane and make sure that there is a low impedance path for the return current following the signal and supply traces all the way from start to the end.

A good practice is to dedicate one of the inner layers to a solid GND plane and one of the inner layers to supply voltage planes and traces and route all the signals on top and bottom layers of the PCB. This arrangement will make sure that any return current follows the forward current as close as possible and any loops are minimized.



Figure 8: Typical 4-layer PCB construction



Figure 9: Use of stitching vias to avoid emissions from the edges of the PCB

# 6 UART Interface

This is a standard UART interface for communicating with other serial devices.WT41-E UART interface provides a simple mechanism for communicating with other serial devices using the RS232 protocol.

Four signals are used to implement the UART function. When WT41-E is connected to another digital device, UART\_RX and UART\_TX transfer data between the two devices. The remaining two signals, UART\_CTS and UART\_RTS, can be used to implement RS232 hardware flow control where both are active low indicators. All UART connections are implemented using CMOS technology and have signalling levels of 0V and VDD.

UART configuration parameters, such as data rate and packet format, are set using WT41-E software.

Note:

In order to communicate with the UART at its maximum data rate using a standard PC, an accelerated serial port adapter card is required for the PC.

| Parameter           | Possible Values   |                       |  |
|---------------------|-------------------|-----------------------|--|
| Data Rate           | Minimum           | 1200 bits/s (2%Error) |  |
|                     |                   | 9600 bits/s (1%Error) |  |
|                     | Maximum           | 3M bit/s (1%Error)    |  |
| Flow Control        | RTS/CTS or None   |                       |  |
| Parity              | None, Odd or Even |                       |  |
| Number of Stop Bits | 1 or 2            |                       |  |
| Bits per Channel    | 8                 |                       |  |

#### Table 13: Possible UART Settings

The UART interface is capable of resetting WT41-E upon reception of a break signal. A break is identified by a continuous logic low (0V) on the UART\_RX terminal, as shown in Figure 10. If tBRK is longer than the value, defined by PSKEY\_HOST\_IO\_UART\_RESET\_TIMEOUT, (0x1a4), a reset will occur. This feature allows a host to initialise the system to a known state. Also, WT41-E can emit a break character that may be used to wake the host.

|         | t <sub>BRK</sub> | 4 |
|---------|------------------|---|
| UART RX | L                |   |

#### Figure 10: Break Signal

Table 17 shows a list of commonly used data rates and their associated values for PSKEY\_UART\_BAUD\_RATE (0x204). There is no requirement to use these standard values. Any data rate within the supported range can be set in the PS Key according to the formula in Equation 1.

# PSKEY\_UART\_BAUDRATE

### 0.004096

### Equation 1: Data Rate

| Data Rate (bits/s) | Persistent Store Value | Error | Dec    |  |
|--------------------|------------------------|-------|--------|--|
|                    | Hex                    |       |        |  |
| 1200               | 0x0005                 | 5     | 1.73%  |  |
| 2400               | 0x000a                 | 10    | 1.73%  |  |
| 4800               | 0x0014                 | 20    | 1.73%  |  |
| 9600               | 0x0027                 | 39    | -0.82% |  |
| 19200              | 0x004f                 | 79    | 0.45%  |  |
| 38400              | 0x009d                 | 157   | -0.18% |  |
| 57600              | 0x00ec                 | 236   | 0.03%  |  |
| 76800              | 0x013b                 | 315   | 0.14%  |  |
| 115200             | 0x01d8                 | 472   | 0.03%  |  |
| 230400             | 0x03b0                 | 944   | 0.03%  |  |
| 460800             | 0x075f                 | 1887  | -0.02% |  |
| 921600             | 0x0ebf                 | 3775  | 0.00%  |  |
| 1382400            | 0x161e                 | 5662  | -0.01% |  |
| 1843200            | 0x1d7e                 | 7550  | 0.00%  |  |
| 2764800            | 0x2c3d                 | 11325 | 0.00%  |  |

Table 14: Standard Data Rates

# 6.1 UART Bypass



Figure 11: UART Bypass Architecture

# 6.2 UART Configuration While Reset is Active

The UART interface for WT41-E while the chip is being held in reset is tristate. This will allow the user to daisy chain devices onto the physical UART bus. The constraint on this method is that any devices connected to this bus must tristate when WT41-E reset is de-asserted and the firmware begins to run.

# 6.3 UART Bypass Mode

Alternatively, for devices that do not tristate the UART bus, the UART bypass mode on BlueCore4-External can be used. The default state of BlueCore4-External after reset is de-asserted; this is for the host UART bus to be connected to the BlueCore4-External UART, thereby allowing communication to BlueCore4-External via the UART. All UART bypass mode connections are implemented using CMOS technology and have signalling levels of 0V and VDD.

In order to apply the UART bypass mode, a BCCMD command will be issued to BlueCore4-External. Upon this issue, it will switch the bypass to PIO[7:4] as Figure 11 indicates. Once the bypass mode has been invoked, WT41-E will enter the Deep Sleep state indefinitely.

In order to re-establish communication with WT41-E, the chip must be reset so that the default configuration takes effect.

It is important for the host to ensure a clean Bluetooth disconnection of any active links before the bypass mode is invoked. Therefore, it is not possible to have active Bluetooth links while operating the bypass mode.

The current consumption for a device in UART bypass mode is equal to the values quoted for a device in standby mode.

# 7 USB Interface

This is a full speed (12Mbits/s) USB interface for communicating with other compatible digital devices. WT41-E acts as a USB peripheral, responding to requests from a master host controller such as a PC.

The USB interface is capable of driving a USB cable directly. No external USB transceiver is required. The device operates as a USB peripheral, responding to requests from a master host controller such as a PC. Both the OHCI and the UHCI standards are supported. The set of USB endpoints implemented can behave as specified in the USB section of the Bluetooth v2.1 + EDR specification or alternatively can appear as a set of endpoints appropriate to USB audio devices such as speakers.

As USB is a master/slave oriented system (in common with other USB peripherals), WT41-E only supports USB Slave operation.

## 7.1 USB Data Connections

The USB data lines emerge as pins USB\_DP and USB\_DN. These terminals are connected to the internal USB I/O buffers of the BlueCore4-External, therefore, have a low output impedance. To match the connection to the characteristic impedance of the USB cable, resistors must be placed in series with USB\_DP/USB\_DN and the cable.

## 7.2 USB Pull-Up resistor

WT41-E features an internal USB pull-up resistor. This pulls the USB\_DP pin weakly high when WT41-E is ready to enumerate. It signals to the PC that it is a full speed (12Mbits/s) USB device.

The USB internal pull-up is implemented as a current source, and is compliant with section 7.1.5 of the USB specification v1.2. The internal pull-up pulls USB\_DP high to at least 2.8V when loaded with a 15k 5% pull-down resistor (in the hub/host) when VDD\_PADS = 3.1V. This presents a Thevenin resistance to the host of at least 900. Alternatively, an external 1.5k pull-up resistor can be placed between a PIO line and D+ on the USB cable. The firmware must be alerted to which mode is used by setting PSKEY\_USB\_PIO\_PULLUP appropriately. The default setting uses the internal pull-up resistor.

## 7.3 USB Power Supply

The USB specification dictates that the minimum output high voltage for USB data lines is 2.8V. To safely meet the USB specification, the voltage on the VDD supply terminal must be an absolute minimum of 3.1V. Bluegiga recommends 3.3V for optimal USB signal quality.

## 7.4 Self-Powered Mode

In self-powered mode, the circuit is powered from its own power supply and not from the VBUS (5V) line of the USB cable. It draws only a small leakage current (below 0.5mA) from VBUS on the USB cable. This is the easier mode for which to design, as the design is not limited by the power that can be drawn from the USB hub or root port. However, it requires that VBUS be connected to WT41-E via a resistor network (Rvb1 and Rvb2), so WT41-E can detect when VBUS is powered up. BlueCore4-External will not pull USB\_DP high when VBUS is off.

Self-powered USB designs (powered from a battery or PSU) must ensure that a PIO line is allocated for USB pullup purposes. A 1.5k 5% pull-up resistor between USB\_DP and the selected PIO line should be fitted to the design. Failure to fit this resistor may result in the design failing to be USB compliant in self-powered mode. The internal pull-up in BlueCore is only suitable for bus-powered USB devices, e.g., dongles.



Figure 12: USB Connections for Self-Powered Mode

The terminal marked USB\_ON can be any free PIO pin. The PIO pin selected must be registered by setting PSKEY\_USB\_PIO\_VBUS to the corresponding pin number.

| Identifier       | Value      | Function                        |
|------------------|------------|---------------------------------|
| R <sub>s</sub>   | 27 nominal | Impedance matching to USB cable |
| R <sub>vb1</sub> | 22k 5%     | VBUS ON sense divider           |
| R <sub>vb2</sub> | 47k 5%     | VBUS ON sense divider           |

#### Figure 13: USB Interface Component Values

## 7.5 Bus-Powered Mode

In bus-powered mode, the application circuit draws its current from the 5V VBUS supply on the USB cable. WT41-E negotiates with the PC during the USB enumeration stage about how much current it is allowed to consume. On power-up the device must not draw more than 100 mA but after being configured it can draw up to 500 mA.

For WT41-E, the USB power descriptor should be altered to reflect the amount of power required. This is accomplished by setting PSKEY\_USB\_MAX\_POWER (0x2c6). This is higher than for a Class 2 application due to the extra current drawn by the Transmit RF PA. By default for WT41-E the setting is 300 mA.

When selecting a regulator, be aware that VBUS may go as low as 4.4V. The inrush current (when charging reservoir and supply decoupling capacitors) is limited by the USB specification. See the USB Specification. Some applications may require soft start circuitry to limit inrush current if more than 10uF is present between VBUS and GND. The 5V VBUS line emerging from a PC is often electrically noisy. As well as regulation down to 3.3V and 1.8V, applications should include careful filtering of the 5V line to attenuate noise that is above the voltage regulator bandwidth. Excessive noise on WT41-E supply pins will result in reduced receiver sensitivity and a distorted RF transmit signal.

Bluegiga Technologies Oy



Figure 14: USB Connections for Bus-Powered Mode

## 7.6 USB Suspend Current

All USB devices must permit the USB controller to place them in a USB suspend mode. While in USB Suspend, bus-powered devices must not draw more than 2.5mA from USB VBUS (self-powered devices may draw more than 2.5mA from their own supply). This current draw requirement prevents operation of the radio by bus-powered devices during USB Suspend.

When computing suspend current, the current from VBUS through the bus pull-up and pull-down resistors must be included. The pull-up resistor at the device is 1.5 k. (nominal). The pull-down resistor at the hub is 14.25k. to 24.80k. The pull-up voltage is nominally 3.3V, which means that holding one of the signal lines high takes approximately 200uA, leaving only 2.3mA available from a 2.5mA budget. Ensure that external LEDs and/or amplifiers can be turned off by BlueCore4-External. The entire circuit must be able to enter the suspend mode.

# 7.7 USB Detach and Wake-Up Signaling

WT41-E can provide out-of-band signaling to a host controller by using the control lines called USB\_DETACH and USB\_WAKE\_UP. These are outside the USB specification (no wires exist for them inside the USB cable), but can be useful when embedding WT41-E into a circuit where no external USB is visible to the user. Both control lines are shared with PIO pins and can be assigned to any PIO pin by setting PSKEY\_USB\_PIO\_DETACH and PSKEY\_USB\_PIO\_WAKEUP to the selected PIO number.

USB\_DETACH is an input which, when asserted high, causes WT41-E to put USB\_DN and USB\_DP in high impedance state and turns off the pull-up resistor on DP. This detaches the device from the bus and is logically equivalent to unplugging the device. When USB\_DETACH is taken low, WT41-E will connect back to USB and await enumeration by the USB host.

USB\_WAKE\_UP is an active high output (used only when USB\_DETACH is active) to wake up the host and allow USB communication to recommence. It replaces the function of the software USB WAKE\_UP message (which runs over the USB cable) and cannot be sent while BlueCore4-External is effectively disconnected from the bus.



Figure 15: USB\_Detach and USB\_Wake\_Up Signals

## 7.8 USB Driver

A USB Bluetooth device driver is required to provide a software interface between BlueCore4-External and Bluetooth software running on the host computer. Please, contact <u>support@bluegiga.com</u> for suitable drivers.

# 7.9 USB v2.0 Compliance and Compatibility

Although WT41-E meets the USB specification, CSR cannot guarantee that an application circuit designed around the module is USB compliant. The choice of application circuit, component choice and PCB layout all affect USB signal quality and electrical characteristics. The information in this document is intended as a guide and should be read in association with the USB specification, with particular attention being given to Chapter 7. Independent USB qualification must be sought before an application is deemed USB compliant and can bear the USB logo. Such qualification can be obtained from a USB plugfest or from an independent USB test house.

Terminals USB\_DP and USB\_DN adhere to the USB Specification v2.0 (Chapter 7) electrical requirements.

BlueCore4-External is compatible with USB v2.0 host controllers; under these circumstances the two ends agree the mutually acceptable rate of 12Mbits/s according to the USB v2.0 specification.